--- library_name: transformers license: bsd-3-clause base_model: - MIT/ast-finetuned-speech-commands-v2 tags: - generated_from_trainer datasets: - audiofolder metrics: - precision - recall - f1 model-index: - name: ast-mlcommons-speech-commands results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: validation args: default metrics: - name: Precision type: precision value: 0.9743628199079283 - name: Recall type: recall value: 0.9743424814179531 - name: F1 type: f1 value: 0.9743165983480835 --- # ast-mlcommons-speech-commands This model is a fine-tuned version of [MIT/ast-finetuned-speech-commands-v2](https://huggingface.co/MIT/ast-finetuned-speech-commands-v2) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1346 - Precision: 0.9744 - Recall: 0.9743 - F1: 0.9743 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:| | 0.0799 | 1.0 | 3496 | 0.1498 | 0.9596 | 0.9573 | 0.9577 | | 0.0624 | 2.0 | 6992 | 0.1141 | 0.9689 | 0.9687 | 0.9685 | | 0.0091 | 3.0 | 10488 | 0.1285 | 0.9713 | 0.9713 | 0.9711 | | 0.0384 | 4.0 | 13984 | 0.1237 | 0.9743 | 0.9743 | 0.9742 | | 0.0019 | 5.0 | 17480 | 0.1346 | 0.9744 | 0.9743 | 0.9743 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1