File size: 2,488 Bytes
7698bcc
 
 
539ebfc
 
7698bcc
 
 
 
 
 
 
 
 
da36d7e
7698bcc
 
 
 
 
 
 
 
 
 
 
 
 
4f71c67
7698bcc
 
4f71c67
7698bcc
 
4f71c67
7698bcc
 
da36d7e
 
96a3ecb
da36d7e
5bf0c4d
539ebfc
da36d7e
4f71c67
 
 
 
96a3ecb
da36d7e
96a3ecb
da36d7e
7ce9db8
da36d7e
7ce9db8
da36d7e
7ce9db8
da36d7e
7ce9db8
da36d7e
7ce9db8
da36d7e
7ce9db8
da36d7e
7ce9db8
da36d7e
 
 
 
 
 
 
 
 
 
7ce9db8
da36d7e
7ce9db8
4f71c67
 
 
 
 
 
 
7ce9db8
 
da36d7e
7ce9db8
da36d7e
 
 
539ebfc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
library_name: transformers
license: bsd-3-clause
base_model:
- MIT/ast-finetuned-speech-commands-v2
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- precision
- recall
- f1
model-index:
- name: ast-mlcommons-speech-commands
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: audiofolder
      type: audiofolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Precision
      type: precision
      value: 0.9743628199079283
    - name: Recall
      type: recall
      value: 0.9743424814179531
    - name: F1
      type: f1
      value: 0.9743165983480835
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ast-mlcommons-speech-commands

This model is a fine-tuned version of [MIT/ast-finetuned-speech-commands-v2](https://huggingface.co/MIT/ast-finetuned-speech-commands-v2) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1346
- Precision: 0.9744
- Recall: 0.9743
- F1: 0.9743

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|
| 0.0799        | 1.0   | 3496  | 0.1498          | 0.9596    | 0.9573 | 0.9577 |
| 0.0624        | 2.0   | 6992  | 0.1141          | 0.9689    | 0.9687 | 0.9685 |
| 0.0091        | 3.0   | 10488 | 0.1285          | 0.9713    | 0.9713 | 0.9711 |
| 0.0384        | 4.0   | 13984 | 0.1237          | 0.9743    | 0.9743 | 0.9742 |
| 0.0019        | 5.0   | 17480 | 0.1346          | 0.9744    | 0.9743 | 0.9743 |


### Framework versions

- Transformers 4.51.3
- Pytorch 2.7.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1