File size: 2,488 Bytes
7698bcc 539ebfc 7698bcc da36d7e 7698bcc 4f71c67 7698bcc 4f71c67 7698bcc 4f71c67 7698bcc da36d7e 96a3ecb da36d7e 5bf0c4d 539ebfc da36d7e 4f71c67 96a3ecb da36d7e 96a3ecb da36d7e 7ce9db8 da36d7e 7ce9db8 da36d7e 7ce9db8 da36d7e 7ce9db8 da36d7e 7ce9db8 da36d7e 7ce9db8 da36d7e 7ce9db8 da36d7e 7ce9db8 da36d7e 7ce9db8 4f71c67 7ce9db8 da36d7e 7ce9db8 da36d7e 539ebfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
library_name: transformers
license: bsd-3-clause
base_model:
- MIT/ast-finetuned-speech-commands-v2
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- precision
- recall
- f1
model-index:
- name: ast-mlcommons-speech-commands
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: audiofolder
type: audiofolder
config: default
split: validation
args: default
metrics:
- name: Precision
type: precision
value: 0.9743628199079283
- name: Recall
type: recall
value: 0.9743424814179531
- name: F1
type: f1
value: 0.9743165983480835
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ast-mlcommons-speech-commands
This model is a fine-tuned version of [MIT/ast-finetuned-speech-commands-v2](https://huggingface.co/MIT/ast-finetuned-speech-commands-v2) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1346
- Precision: 0.9744
- Recall: 0.9743
- F1: 0.9743
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|
| 0.0799 | 1.0 | 3496 | 0.1498 | 0.9596 | 0.9573 | 0.9577 |
| 0.0624 | 2.0 | 6992 | 0.1141 | 0.9689 | 0.9687 | 0.9685 |
| 0.0091 | 3.0 | 10488 | 0.1285 | 0.9713 | 0.9713 | 0.9711 |
| 0.0384 | 4.0 | 13984 | 0.1237 | 0.9743 | 0.9743 | 0.9742 |
| 0.0019 | 5.0 | 17480 | 0.1346 | 0.9744 | 0.9743 | 0.9743 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1 |