--- library_name: transformers license: apache-2.0 datasets: - lkevinzc/numia-1.5-qa-concatenated base_model: - HuggingFaceTB/FineMath-Llama-3B --- # Llama-3.2-3B-NuminaQA ## Links - 📜 [Paper](https://github.com/sail-sg/understand-r1-zero/blob/main/understand-r1-zero.pdf) - 💻 [GitHub](https://github.com/sail-sg/understand-r1-zero) - 🤗 [Oat-Zero Collection](https://huggingface.co/collections/sail/oat-zero-understanding-r1-zero-like-training-67dcdb07b9f3eb05f1501c4a) ## Introduction This model serves as a 3B base in our minimalist R1-Zero recipe. Training details: - Base model: [HuggingFaceTB/FineMath-Llama-3B](https://huggingface.co/HuggingFaceTB/FineMath-Llama-3B) - Dataset: [lkevinzc/numia-1.5-qa-concatenated](https://huggingface.co/datasets/lkevinzc/numia-1.5-qa-concatenated) - Epochs: 2 - Learning rate: 1e-5 ## Citation ```latex @article{liu2025understanding, title={Understanding r1-zero-like training: A critical perspective}, author={Liu, Zichen and Chen, Changyu and Li, Wenjun and Qi, Penghui and Pang, Tianyu and Du, Chao and Lee, Wee Sun and Lin, Min}, journal={arXiv preprint arXiv:2503.20783}, year={2025} } ```