--- base_model: sentence-transformers/stsb-xlm-r-multilingual datasets: [] language: [] library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:193860 - loss:MultipleNegativesRankingLoss widget: - source_sentence: ഓ, അതെ, ഞാൻ അവരെ കഴുത്ത് ഞെരിച്ച് കൊല്ലുമായിരുന്നു എന്ന ചിന്തയെക്കുറിച്ച് വായിച്ചത് ഞാൻ ഓർക്കുന്നു. sentences: - A major privacy related disaster might be an exception. - আমি এটি সম্পর্কে পড়েছি এবং ভেবেছিলাম যে আমাকে তাদের শ্বাসরোধ করতে হবে। - How do you like it out there? - source_sentence: A male tennis player hits a tennis ball at a tennis match. sentences: - You can shower outside in nature with privacy. - രണ്ട് കാറുകൾ ഓടുന്നു. - একজন লোক টেনিস খেলছে। - source_sentence: ఒక గోధుమ మరియు తెలుపు కుక్క ఒక ఇంటి ప్రాంగణంలో ఆడుతోంది. sentences: - आँगन में एक कुत्ता खेल रहा है। - तालप्रिय ग्वाडेलोपियन पर्यटकांच्या संख्येपेक्षा जास्त असतील. - সবুজ পোশাকে কিছু মানুষ - source_sentence: A baby wearing a pink outfit with flowers on it has its mouth open. sentences: - बैठकीच्या खोलीच्या भिंती पांढऱ्या आहेत. - a baby is in a pink outfit - এটা ভালো হবে, কিন্তু আমি স্বাধীনতা উপভোগ করি। - source_sentence: A baby wearing a watch. sentences: - એક બાળક ઘડિયાળ પહેરી રહ્યું છે. - एक बेसबॉल खिलाड़ी गेंद पर झूलता है। - The mans legs are touching. model-index: - name: SentenceTransformer based on sentence-transformers/stsb-xlm-r-multilingual results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev type: sts-dev metrics: - type: pearson_cosine value: 0.8658165968626415 name: Pearson Cosine - type: spearman_cosine value: 0.8714077275778997 name: Spearman Cosine - type: pearson_manhattan value: 0.8695576458225691 name: Pearson Manhattan - type: spearman_manhattan value: 0.8700925845327402 name: Spearman Manhattan - type: pearson_euclidean value: 0.8694747813672388 name: Pearson Euclidean - type: spearman_euclidean value: 0.8703633875862249 name: Spearman Euclidean - type: pearson_dot value: 0.7735824081876905 name: Pearson Dot - type: spearman_dot value: 0.7728637057026586 name: Spearman Dot - type: pearson_max value: 0.8695576458225691 name: Pearson Max - type: spearman_max value: 0.8714077275778997 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test type: sts-test metrics: - type: pearson_cosine value: 0.8413454674808685 name: Pearson Cosine - type: spearman_cosine value: 0.8516557437790466 name: Spearman Cosine - type: pearson_manhattan value: 0.8406890199541754 name: Pearson Manhattan - type: spearman_manhattan value: 0.8401478064056196 name: Spearman Manhattan - type: pearson_euclidean value: 0.8405040750844844 name: Pearson Euclidean - type: spearman_euclidean value: 0.8402979769379469 name: Spearman Euclidean - type: pearson_dot value: 0.7261415217517116 name: Pearson Dot - type: spearman_dot value: 0.7095416925344771 name: Spearman Dot - type: pearson_max value: 0.8413454674808685 name: Pearson Max - type: spearman_max value: 0.8516557437790466 name: Spearman Max --- # SentenceTransformer based on sentence-transformers/stsb-xlm-r-multilingual This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/stsb-xlm-r-multilingual](https://huggingface.co/sentence-transformers/stsb-xlm-r-multilingual). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/stsb-xlm-r-multilingual](https://huggingface.co/sentence-transformers/stsb-xlm-r-multilingual) - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'A baby wearing a watch.', 'એક બાળક ઘડિયાળ પહેરી રહ્યું છે.', 'The mans legs are touching.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8658 | | **spearman_cosine** | **0.8714** | | pearson_manhattan | 0.8696 | | spearman_manhattan | 0.8701 | | pearson_euclidean | 0.8695 | | spearman_euclidean | 0.8704 | | pearson_dot | 0.7736 | | spearman_dot | 0.7729 | | pearson_max | 0.8696 | | spearman_max | 0.8714 | #### Semantic Similarity * Dataset: `sts-test` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8413 | | **spearman_cosine** | **0.8517** | | pearson_manhattan | 0.8407 | | spearman_manhattan | 0.8401 | | pearson_euclidean | 0.8405 | | spearman_euclidean | 0.8403 | | pearson_dot | 0.7261 | | spearman_dot | 0.7095 | | pearson_max | 0.8413 | | spearman_max | 0.8517 | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 193,860 training samples * Columns: query, positive, and negative * Approximate statistics based on the first 1000 samples: | | query | positive | negative | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | query | positive | negative | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------| | Delos was not only an important religious center, but also a major meeting point for trade between East and West during the Hellenistic and Roman eras. | The East and West met at Delos to trade. | All of the buildings are open to visitors. | | काळ्या रंगाचा शर्ट घातलेली एक स्त्री तिच्या उजवीकडे पाहते, तर तिच्या डाव्या बाजूला निळ्या रंगाची बनियान घातलेला एक माणूस काचेतून पाणी पितो. | કાળા શર્ટમાં મહિલા તેના લખાણ તરફ જોઈ રહી હતી જ્યારે તેની બાજુના સજ્જન તેની તરસ છીપાવી રહ્યા હતા. | Armies of Cathar heretics and Roman church battled near Albi la Rouge. | | કોંક્રિટ પગથિયા પર બેઠેલા ધાબળામાં વીંટાળેલા નાના બાળક સાથેનું દંપતી | సంబంధంలో ఉన్న ఇద్దరు వ్యక్తులు ఒక బిడ్డతో కూర్చున్నారు. | যারা আইনি সহায়তা চাইছেন তাদের জন্য এনজেপি ইন্টারনেট ভিত্তিক সহায়তা এবং সহায়তা প্রদান করে। | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 48,465 evaluation samples * Columns: query, positive, and negative * Approximate statistics based on the first 1000 samples: | | query | positive | negative | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | query | positive | negative | |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------|:-------------------------------------------------------------| | काउबॉय टोपी और जींस पहने आदमी लकड़ी की इमारत के सामने खड़ा है। | लाकडी इमारतीसमोर उभा असलेला एक माणूस. | ஒரு சூட் அணிந்த ஒரு மனிதர் தெருவைக் கடக்கிறார். | | 7 The Malcolm Baldridge National Quality Award and the President's Quality Award are given to organizations for their overall achievements in quality and performance. | ఒక సంస్థ బాగా పనిచేస్తే, వారికి రెండు అవార్డులు లభిస్తాయి. | விட்டிங்டன் ஒரு வண்டியில் சவாரி செய்தார். | | ఈ ఫుట్బాల్ జట్టు ఎరుపు చొక్కాలు మరియు ఎరుపు శిరస్త్రాణాలు ధరిస్తుంది. | তারা ফুটবল খেলছে। | एक आदमी मेट्रो में है। | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `bf16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine | |:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:| | 0 | 0 | - | - | 0.8676 | - | | 0.0660 | 50 | - | 1.6688 | 0.8638 | - | | 0.1319 | 100 | 1.9732 | 1.2907 | 0.8670 | - | | 0.1979 | 150 | - | 1.1554 | 0.8677 | - | | 0.2639 | 200 | 1.266 | 1.0765 | 0.8671 | - | | 0.3298 | 250 | - | 1.0252 | 0.8674 | - | | 0.3958 | 300 | 1.1386 | 0.9857 | 0.8662 | - | | 0.4617 | 350 | - | 0.9448 | 0.8680 | - | | 0.5277 | 400 | 1.0391 | 0.9190 | 0.8700 | - | | 0.5937 | 450 | - | 0.8990 | 0.8685 | - | | 0.6596 | 500 | 0.9889 | 0.8792 | 0.8696 | - | | 0.7256 | 550 | - | 0.8619 | 0.8719 | - | | 0.7916 | 600 | 0.9574 | 0.8501 | 0.8724 | - | | 0.8575 | 650 | - | 0.8415 | 0.8724 | - | | 0.9235 | 700 | 0.9253 | 0.8345 | 0.8722 | - | | 0.9894 | 750 | - | 0.8308 | 0.8714 | - | | 1.0 | 758 | - | - | - | 0.8517 | ### Framework Versions - Python: 3.9.19 - Sentence Transformers: 3.0.1 - Transformers: 4.44.2 - PyTorch: 2.4.0+cu121 - Accelerate: 0.33.0 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```