Text-to-Speech
English
Chinese
zhu-han commited on
Commit
6fd9e04
·
verified ·
1 Parent(s): fdc91b8

Upload 22 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ wer/paraformer-zh/asr_example_hotword.wav filter=lfs diff=lfs merge=lfs -text
37
+ wer/paraformer-zh/example/asr_example.wav filter=lfs diff=lfs merge=lfs -text
38
+ wer/paraformer-zh/fig/res.png filter=lfs diff=lfs merge=lfs -text
39
+ wer/paraformer-zh/fig/seaco.png filter=lfs diff=lfs merge=lfs -text
wer/hubert-large-ls960-ft/README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets:
4
+ - libri-light
5
+ - librispeech_asr
6
+ tags:
7
+ - speech
8
+ - audio
9
+ - automatic-speech-recognition
10
+ - hf-asr-leaderboard
11
+ license: apache-2.0
12
+ model-index:
13
+ - name: hubert-large-ls960-ft
14
+ results:
15
+ - task:
16
+ name: Automatic Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: LibriSpeech (clean)
20
+ type: librispeech_asr
21
+ config: clean
22
+ split: test
23
+ args:
24
+ language: en
25
+ metrics:
26
+ - name: Test WER
27
+ type: wer
28
+ value: 1.9
29
+ ---
30
+
31
+ # Hubert-Large-Finetuned
32
+
33
+ [Facebook's Hubert](https://ai.facebook.com/blog/hubert-self-supervised-representation-learning-for-speech-recognition-generation-and-compression)
34
+
35
+ The large model fine-tuned on 960h of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
36
+
37
+ The model is a fine-tuned version of [hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k).
38
+
39
+ [Paper](https://arxiv.org/abs/2106.07447)
40
+
41
+ Authors: Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed
42
+
43
+ **Abstract**
44
+ Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets.
45
+
46
+ The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/hubert .
47
+
48
+ # Usage
49
+
50
+ The model can be used for automatic-speech-recognition as follows:
51
+
52
+ ```python
53
+ import torch
54
+ from transformers import Wav2Vec2Processor, HubertForCTC
55
+ from datasets import load_dataset
56
+
57
+ processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft")
58
+ model = HubertForCTC.from_pretrained("facebook/hubert-large-ls960-ft")
59
+
60
+ ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
61
+
62
+ input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1
63
+ logits = model(input_values).logits
64
+ predicted_ids = torch.argmax(logits, dim=-1)
65
+ transcription = processor.decode(predicted_ids[0])
66
+
67
+ # ->"A MAN SAID TO THE UNIVERSE SIR I EXIST"
68
+ ```
wer/hubert-large-ls960-ft/config.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/hubert-large-ls960-ft",
3
+ "activation_dropout": 0.1,
4
+ "apply_spec_augment": true,
5
+ "architectures": [
6
+ "HubertForCTC"
7
+ ],
8
+ "attention_dropout": 0.1,
9
+ "bos_token_id": 1,
10
+ "conv_bias": true,
11
+ "conv_dim": [
12
+ 512,
13
+ 512,
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512
19
+ ],
20
+ "conv_kernel": [
21
+ 10,
22
+ 3,
23
+ 3,
24
+ 3,
25
+ 3,
26
+ 2,
27
+ 2
28
+ ],
29
+ "conv_stride": [
30
+ 5,
31
+ 2,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2
37
+ ],
38
+ "ctc_loss_reduction": "sum",
39
+ "ctc_zero_infinity": false,
40
+ "diversity_loss_weight": 0.1,
41
+ "do_stable_layer_norm": true,
42
+ "eos_token_id": 2,
43
+ "feat_extract_activation": "gelu",
44
+ "feat_extract_dropout": 0.0,
45
+ "feat_extract_norm": "layer",
46
+ "feat_proj_dropout": 0.1,
47
+ "final_dropout": 0.1,
48
+ "gradient_checkpointing": false,
49
+ "hidden_act": "gelu",
50
+ "hidden_dropout": 0.1,
51
+ "hidden_dropout_prob": 0.1,
52
+ "hidden_size": 1024,
53
+ "initializer_range": 0.02,
54
+ "intermediate_size": 4096,
55
+ "layer_norm_eps": 1e-05,
56
+ "layerdrop": 0.1,
57
+ "mask_feature_length": 10,
58
+ "mask_feature_prob": 0.0,
59
+ "mask_time_length": 10,
60
+ "mask_time_prob": 0.05,
61
+ "model_type": "hubert",
62
+ "num_attention_heads": 16,
63
+ "num_conv_pos_embedding_groups": 16,
64
+ "num_conv_pos_embeddings": 128,
65
+ "num_feat_extract_layers": 7,
66
+ "num_hidden_layers": 24,
67
+ "pad_token_id": 0,
68
+ "transformers_version": "4.10.0.dev0",
69
+ "vocab_size": 32
70
+ }
wer/hubert-large-ls960-ft/preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
wer/hubert-large-ls960-ft/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cf43abec3f0410ad6854afa4d376c69ccb364b48ddddfd25c4c5aa16398eab0
3
+ size 1262057559
wer/hubert-large-ls960-ft/special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
wer/hubert-large-ls960-ft/tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "<pad>", "do_lower_case": false, "word_delimiter_token": "|"}
wer/hubert-large-ls960-ft/vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<pad>": 0, "<s>": 1, "</s>": 2, "<unk>": 3, "|": 4, "E": 5, "T": 6, "A": 7, "O": 8, "N": 9, "I": 10, "H": 11, "S": 12, "R": 13, "D": 14, "L": 15, "U": 16, "M": 17, "W": 18, "C": 19, "F": 20, "G": 21, "Y": 22, "P": 23, "B": 24, "V": 25, "K": 26, "'": 27, "X": 28, "J": 29, "Q": 30, "Z": 31}
wer/paraformer-zh/.mdl ADDED
Binary file (99 Bytes). View file
 
wer/paraformer-zh/.msc ADDED
Binary file (838 Bytes). View file
 
wer/paraformer-zh/.mv ADDED
@@ -0,0 +1 @@
 
 
1
+ Revision:master,CreatedAt:1727670560
wer/paraformer-zh/README.md ADDED
@@ -0,0 +1,357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tasks:
3
+ - auto-speech-recognition
4
+ domain:
5
+ - audio
6
+ model-type:
7
+ - Non-autoregressive
8
+ frameworks:
9
+ - pytorch
10
+ backbone:
11
+ - transformer/conformer
12
+ metrics:
13
+ - CER
14
+ license: Apache License 2.0
15
+ language:
16
+ - cn
17
+ tags:
18
+ - FunASR
19
+ - Paraformer
20
+ - Alibaba
21
+ - ICASSP2024
22
+ - Hotword
23
+ datasets:
24
+ train:
25
+ - 50,000 hour industrial Mandarin task
26
+ test:
27
+ - AISHELL-1-hotword dev/test
28
+ indexing:
29
+ results:
30
+ - task:
31
+ name: Automatic Speech Recognition
32
+ dataset:
33
+ name: 50,000 hour industrial Mandarin task
34
+ type: audio # optional
35
+ args: 16k sampling rate, 8404 characters # optional
36
+ metrics:
37
+ - type: CER
38
+ value: 8.53% # float
39
+ description: greedy search, withou lm, avg.
40
+ args: default
41
+ - type: RTF
42
+ value: 0.0251 # float
43
+ description: GPU inference on V100
44
+ args: batch_size=1
45
+ widgets:
46
+ - task: auto-speech-recognition
47
+ inputs:
48
+ - type: audio
49
+ name: input
50
+ title: 音频
51
+ parameters:
52
+ - name: hotword
53
+ title: 热词
54
+ type: string
55
+ examples:
56
+ - name: 1
57
+ title: 示例1
58
+ inputs:
59
+ - name: input
60
+ data: git://example/asr_example.wav
61
+ parameters:
62
+ - name: hotword
63
+ value: 魔搭
64
+ model_revision: v2.0.4
65
+ inferencespec:
66
+ cpu: 8 #CPU数量
67
+ memory: 4096
68
+ ---
69
+
70
+ # Paraformer-large模型介绍
71
+
72
+ ## Highlights
73
+ Paraformer-large热词版模型支持热词定制功能:实现热词定制化功能,基于提供的热词列表进行激励增强,提升热词的召回率和准确率。
74
+
75
+
76
+ ## <strong>[FunASR开源项目介绍](https://github.com/alibaba-damo-academy/FunASR)</strong>
77
+ <strong>[FunASR](https://github.com/alibaba-damo-academy/FunASR)</strong>希望在语音识别的学术研究和工业应用之间架起一座桥梁。通过发布工业级语音识别模型的训练和微调,研究人员和开发人员可以更方便地进行语音识别模型的研究和生产,并推动语音识别生态的发展。让语音识别更有趣!
78
+
79
+ [**github仓库**](https://github.com/alibaba-damo-academy/FunASR)
80
+ | [**最新动态**](https://github.com/alibaba-damo-academy/FunASR#whats-new)
81
+ | [**环境安装**](https://github.com/alibaba-damo-academy/FunASR#installation)
82
+ | [**服务部署**](https://www.funasr.com)
83
+ | [**模型库**](https://github.com/alibaba-damo-academy/FunASR/tree/main/model_zoo)
84
+ | [**联系我们**](https://github.com/alibaba-damo-academy/FunASR#contact)
85
+
86
+
87
+ ## 模型原理介绍
88
+
89
+ SeACoParaformer是阿里巴巴语音实验室提出的新一代热词定制化非自回归语音识别模型。相比于上一代基于CLAS的热词定制化方案,SeACoParaformer解耦了热词模块与ASR模型,通过后验概率融合的方式进行热词激励,使激励过程可见可控,并且热词召回率显著提升。
90
+
91
+ <p align="center">
92
+ <img src="fig/seaco.png" alt="SeACoParaformer模型结构" width="380" />
93
+
94
+
95
+ SeACoParaformer的模型结构与训练流程如上图所示,通过引入bias encoder进行热词embedding提取,bias decoder进行注意力建模,SeACoParaformer能够捕捉到Predictor输出和Decoder输出的信息与热词的相关性,并且预测与ASR结果同步的热词输出。通过后验概率的融合,实现热词激励。与ContextualParaformer相比,SeACoParaformer有明显的效果提升,如下图所示:
96
+
97
+ <p align="center">
98
+ <img src="fig/res.png" alt="SeACoParaformer模型结构" width="700" />
99
+
100
+ 更详细的细节见:
101
+ - 论文: [SeACo-Paraformer: A Non-Autoregressive ASR System with Flexible and Effective Hotword Customization Ability](https://arxiv.org/abs/2308.03266)
102
+
103
+ ## 复现论文中的结果
104
+ ```python
105
+ from funasr import AutoModel
106
+
107
+ model = AutoModel(model="iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
108
+ model_revision="v2.0.4",
109
+ # vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
110
+ # vad_model_revision="v2.0.4",
111
+ # punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch",
112
+ # punc_model_revision="v2.0.4",
113
+ # spk_model="damo/speech_campplus_sv_zh-cn_16k-common",
114
+ # spk_model_revision="v2.0.2",
115
+ device="cuda:0"
116
+ )
117
+
118
+ res = model.generate(input="YOUR_PATH/aishell1_hotword_dev.scp",
119
+ hotword='./data/dev/hotword.txt',
120
+ batch_size_s=300,
121
+ )
122
+ fout1 = open("dev.output", 'w')
123
+ for resi in res:
124
+ fout1.write("{}\t{}\n".format(resi['key'], resi['text']))
125
+
126
+ res = model.generate(input="YOUR_PATH/aishell1_hotword_test.scp",
127
+ hotword='./data/test/hotword.txt',
128
+ batch_size_s=300,
129
+ )
130
+ fout2 = open("test.output", 'w')
131
+ for resi in res:
132
+ fout2.write("{}\t{}\n".format(resi['key'], resi['text']))
133
+ ```
134
+
135
+ ## 基于ModelScope进行推理
136
+
137
+ - 推理支��音频格式如下:
138
+ - wav文件路径,例如:data/test/audios/asr_example.wav
139
+ - pcm文件路径,例如:data/test/audios/asr_example.pcm
140
+ - wav文件url,例如:https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav
141
+ - wav二进制数据,格式bytes,例如:用户直接从文件里读出bytes数据或者是麦克风录出bytes数据。
142
+ - 已解析的audio音频,例如:audio, rate = soundfile.read("asr_example_zh.wav"),类型为numpy.ndarray或者torch.Tensor。
143
+ - wav.scp文件,需符合如下要求:
144
+
145
+ ```sh
146
+ cat wav.scp
147
+ asr_example1 data/test/audios/asr_example1.wav
148
+ asr_example2 data/test/audios/asr_example2.wav
149
+ ...
150
+ ```
151
+
152
+ - 若输入格式wav文件url,api调用方式可参考如下范例:
153
+
154
+ ```python
155
+ from modelscope.pipelines import pipeline
156
+ from modelscope.utils.constant import Tasks
157
+
158
+ inference_pipeline = pipeline(
159
+ task=Tasks.auto_speech_recognition,
160
+ model='iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch', model_revision="v2.0.4")
161
+
162
+ rec_result = inference_pipeline('https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav', hotword='达摩院 魔搭')
163
+ print(rec_result)
164
+ ```
165
+
166
+ - 输入音频为pcm格式,调用api时需要传入音频采样率参数audio_fs,例如:
167
+
168
+ ```python
169
+ rec_result = inference_pipeline('https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.pcm', fs=16000, hotword='达摩院 魔搭')
170
+ ```
171
+
172
+ - 输入音频为wav格式,api调用方式可参考如下范例:
173
+
174
+ ```python
175
+ rec_result = inference_pipeline('asr_example_zh.wav', hotword='达摩院 魔搭')
176
+ ```
177
+
178
+ - 若输入格式为文件wav.scp(注:文件名需要以.scp结尾),可添加 output_dir 参数将识别结果写入文件中,api调用方式可参考如下范例:
179
+
180
+ ```python
181
+ inference_pipeline("wav.scp", output_dir='./output_dir', hotword='达摩院 魔搭')
182
+ ```
183
+ 识别结果输出路径结构如下:
184
+
185
+ ```sh
186
+ tree output_dir/
187
+ output_dir/
188
+ └── 1best_recog
189
+ ├── score
190
+ └── text
191
+
192
+ 1 directory, 3 files
193
+ ```
194
+
195
+ score:识别路径得分
196
+
197
+ text:语音识别结果文件
198
+
199
+
200
+ - 若输入音频为已解析的audio音频,api调用方式可参考如下范例:
201
+
202
+ ```python
203
+ import soundfile
204
+
205
+ waveform, sample_rate = soundfile.read("asr_example_zh.wav")
206
+ rec_result = inference_pipeline(waveform, hotword='达摩院 魔搭')
207
+ ```
208
+
209
+ - ASR、VAD、PUNC模型自由组合
210
+
211
+ 可根据使用需求对VAD和PUNC标点模型进行自由组合,使用方式如下:
212
+ ```python
213
+ inference_pipeline = pipeline(
214
+ task=Tasks.auto_speech_recognition,
215
+ model='iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch', model_revision="v2.0.4",
216
+ vad_model='iic/speech_fsmn_vad_zh-cn-16k-common-pytorch', vad_model_revision="v2.0.4",
217
+ punc_model='iic/punc_ct-transformer_zh-cn-common-vocab272727-pytorch', punc_model_revision="v2.0.3",
218
+ # spk_model="iic/speech_campplus_sv_zh-cn_16k-common",
219
+ # spk_model_revision="v2.0.2",
220
+ )
221
+ ```
222
+ 若不使用PUNC模型,可配置punc_model=None,或不传入punc_model参数,如需加入LM模型,可增加配置lm_model='iic/speech_transformer_lm_zh-cn-common-vocab8404-pytorch',并设置lm_weight和beam_size参数。
223
+
224
+ ## 基于FunASR进行推理
225
+
226
+ 下面为快速上手教程,测试音频([中文](https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav),[英文](https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_en.wav))
227
+
228
+ ### 可执行命令行
229
+ 在命令行终端执行:
230
+
231
+ ```shell
232
+ funasr +model=paraformer-zh +vad_model="fsmn-vad" +punc_model="ct-punc" +input=vad_example.wav
233
+ ```
234
+
235
+ 注:支持单条音频文件识别,也支持文件列表,列表为kaldi风格wav.scp:`wav_id wav_path`
236
+
237
+ ### python示例
238
+ #### 非实时语音识别
239
+ ```python
240
+ from funasr import AutoModel
241
+ # paraformer-zh is a multi-functional asr model
242
+ # use vad, punc, spk or not as you need
243
+ model = AutoModel(model="paraformer-zh", model_revision="v2.0.4",
244
+ vad_model="fsmn-vad", vad_model_revision="v2.0.4",
245
+ punc_model="ct-punc-c", punc_model_revision="v2.0.4",
246
+ # spk_model="cam++", spk_model_revision="v2.0.2",
247
+ )
248
+ res = model.generate(input=f"{model.model_path}/example/asr_example.wav",
249
+ batch_size_s=300,
250
+ hotword='魔搭')
251
+ print(res)
252
+ ```
253
+ 注:`model_hub`:表示模型仓库,`ms`为选择modelscope下载,`hf`为选择huggingface下载。
254
+
255
+ #### 实时语音识别
256
+
257
+ ```python
258
+ from funasr import AutoModel
259
+
260
+ chunk_size = [0, 10, 5] #[0, 10, 5] 600ms, [0, 8, 4] 480ms
261
+ encoder_chunk_look_back = 4 #number of chunks to lookback for encoder self-attention
262
+ decoder_chunk_look_back = 1 #number of encoder chunks to lookback for decoder cross-attention
263
+
264
+ model = AutoModel(model="paraformer-zh-streaming", model_revision="v2.0.4")
265
+
266
+ import soundfile
267
+ import os
268
+
269
+ wav_file = os.path.join(model.model_path, "example/asr_example.wav")
270
+ speech, sample_rate = soundfile.read(wav_file)
271
+ chunk_stride = chunk_size[1] * 960 # 600ms
272
+
273
+ cache = {}
274
+ total_chunk_num = int(len((speech)-1)/chunk_stride+1)
275
+ for i in range(total_chunk_num):
276
+ speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
277
+ is_final = i == total_chunk_num - 1
278
+ res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size, encoder_chunk_look_back=encoder_chunk_look_back, decoder_chunk_look_back=decoder_chunk_look_back)
279
+ print(res)
280
+ ```
281
+
282
+ 注:`chunk_size`为流式延时配置,`[0,10,5]`表示上屏实时出字粒度为`10*60=600ms`,未来信息为`5*60=300ms`。每次推理输入为`600ms`(采样点数为`16000*0.6=960`),输出为对应文字,最后一个语音片段输入需要设置`is_final=True`来强制输出最后一个字。
283
+
284
+ #### 语音端点检测(非实时)
285
+ ```python
286
+ from funasr import AutoModel
287
+
288
+ model = AutoModel(model="fsmn-vad", model_revision="v2.0.4")
289
+
290
+ wav_file = f"{model.model_path}/example/asr_example.wav"
291
+ res = model.generate(input=wav_file)
292
+ print(res)
293
+ ```
294
+
295
+ #### 语音端点检测(实时)
296
+ ```python
297
+ from funasr import AutoModel
298
+
299
+ chunk_size = 200 # ms
300
+ model = AutoModel(model="fsmn-vad", model_revision="v2.0.4")
301
+
302
+ import soundfile
303
+
304
+ wav_file = f"{model.model_path}/example/vad_example.wav"
305
+ speech, sample_rate = soundfile.read(wav_file)
306
+ chunk_stride = int(chunk_size * sample_rate / 1000)
307
+
308
+ cache = {}
309
+ total_chunk_num = int(len((speech)-1)/chunk_stride+1)
310
+ for i in range(total_chunk_num):
311
+ speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
312
+ is_final = i == total_chunk_num - 1
313
+ res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size)
314
+ if len(res[0]["value"]):
315
+ print(res)
316
+ ```
317
+
318
+ #### 标点恢复
319
+ ```python
320
+ from funasr import AutoModel
321
+
322
+ model = AutoModel(model="ct-punc", model_revision="v2.0.4")
323
+
324
+ res = model.generate(input="那今天的会就到这里吧 happy new year 明年见")
325
+ print(res)
326
+ ```
327
+
328
+ #### 时间戳预测
329
+ ```python
330
+ from funasr import AutoModel
331
+
332
+ model = AutoModel(model="fa-zh", model_revision="v2.0.4")
333
+
334
+ wav_file = f"{model.model_path}/example/asr_example.wav"
335
+ text_file = f"{model.model_path}/example/text.txt"
336
+ res = model.generate(input=(wav_file, text_file), data_type=("sound", "text"))
337
+ print(res)
338
+ ```
339
+
340
+ 更多详细用法([示例](https://github.com/alibaba-damo-academy/FunASR/tree/main/examples/industrial_data_pretraining))
341
+
342
+
343
+ ## 微调
344
+
345
+ 详细用法([示例](https://github.com/alibaba-damo-academy/FunASR/tree/main/examples/industrial_data_pretraining))
346
+
347
+
348
+ ## 相关论文以及引用信息
349
+
350
+ ```BibTeX
351
+ @article{shi2023seaco,
352
+ title={SeACo-Paraformer: A Non-Autoregressive ASR System with Flexible and Effective Hotword Customization Ability},
353
+ author={Shi, Xian and Yang, Yexin and Li, Zerui and Zhang, Shiliang},
354
+ journal={arXiv preprint arXiv:2308.03266 (accepted by ICASSP2024)},
355
+ year={2023}
356
+ }
357
+ ```
wer/paraformer-zh/am.mvn ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <Nnet>
2
+ <Splice> 560 560
3
+ [ 0 ]
4
+ <AddShift> 560 560
5
+ <LearnRateCoef> 0 [ -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 ]
6
+ <Rescale> 560 560
7
+ <LearnRateCoef> 0 [ 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 ]
8
+ </Nnet>
wer/paraformer-zh/asr_example_hotword.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51792bc95be33075c1a8abb9afb76ad9f72943e84cd723cc8825b2678799b004
3
+ size 253642
wer/paraformer-zh/config.yaml ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This is an example that demonstrates how to configure a model file.
2
+ # You can modify the configuration according to your own requirements.
3
+
4
+ # to print the register_table:
5
+ # from funasr.utils.register import registry_tables
6
+ # registry_tables.print()
7
+
8
+ # network architecture
9
+ model: SeacoParaformer
10
+ model_conf:
11
+ ctc_weight: 0.0
12
+ lsm_weight: 0.1
13
+ length_normalized_loss: true
14
+ predictor_weight: 1.0
15
+ predictor_bias: 1
16
+ sampling_ratio: 0.75
17
+ inner_dim: 512
18
+ bias_encoder_type: lstm
19
+ bias_encoder_bid: false
20
+ seaco_lsm_weight: 0.1
21
+ seaco_length_normal: true
22
+ train_decoder: true
23
+ NO_BIAS: 8377
24
+
25
+ # encoder
26
+ encoder: SANMEncoder
27
+ encoder_conf:
28
+ output_size: 512
29
+ attention_heads: 4
30
+ linear_units: 2048
31
+ num_blocks: 50
32
+ dropout_rate: 0.1
33
+ positional_dropout_rate: 0.1
34
+ attention_dropout_rate: 0.1
35
+ input_layer: pe
36
+ pos_enc_class: SinusoidalPositionEncoder
37
+ normalize_before: true
38
+ kernel_size: 11
39
+ sanm_shfit: 0
40
+ selfattention_layer_type: sanm
41
+
42
+ # decoder
43
+ decoder: ParaformerSANMDecoder
44
+ decoder_conf:
45
+ attention_heads: 4
46
+ linear_units: 2048
47
+ num_blocks: 16
48
+ dropout_rate: 0.1
49
+ positional_dropout_rate: 0.1
50
+ self_attention_dropout_rate: 0.1
51
+ src_attention_dropout_rate: 0.1
52
+ att_layer_num: 16
53
+ kernel_size: 11
54
+ sanm_shfit: 0
55
+
56
+ # seaco decoder
57
+ seaco_decoder: ParaformerSANMDecoder
58
+ seaco_decoder_conf:
59
+ attention_heads: 4
60
+ linear_units: 1024
61
+ num_blocks: 4
62
+ dropout_rate: 0.1
63
+ positional_dropout_rate: 0.1
64
+ self_attention_dropout_rate: 0.1
65
+ src_attention_dropout_rate: 0.1
66
+ kernel_size: 21
67
+ sanm_shfit: 0
68
+ use_output_layer: false
69
+ wo_input_layer: true
70
+
71
+ predictor: CifPredictorV3
72
+ predictor_conf:
73
+ idim: 512
74
+ threshold: 1.0
75
+ l_order: 1
76
+ r_order: 1
77
+ tail_threshold: 0.45
78
+ smooth_factor2: 0.25
79
+ noise_threshold2: 0.01
80
+ upsample_times: 3
81
+ use_cif1_cnn: false
82
+ upsample_type: cnn_blstm
83
+
84
+ # frontend related
85
+ frontend: WavFrontend
86
+ frontend_conf:
87
+ fs: 16000
88
+ window: hamming
89
+ n_mels: 80
90
+ frame_length: 25
91
+ frame_shift: 10
92
+ lfr_m: 7
93
+ lfr_n: 6
94
+ dither: 0.0
95
+
96
+ specaug: SpecAugLFR
97
+ specaug_conf:
98
+ apply_time_warp: false
99
+ time_warp_window: 5
100
+ time_warp_mode: bicubic
101
+ apply_freq_mask: true
102
+ freq_mask_width_range:
103
+ - 0
104
+ - 30
105
+ lfr_rate: 6
106
+ num_freq_mask: 1
107
+ apply_time_mask: true
108
+ time_mask_width_range:
109
+ - 0
110
+ - 12
111
+ num_time_mask: 1
112
+
113
+ train_conf:
114
+ accum_grad: 1
115
+ grad_clip: 5
116
+ max_epoch: 150
117
+ val_scheduler_criterion:
118
+ - valid
119
+ - acc
120
+ best_model_criterion:
121
+ - - valid
122
+ - acc
123
+ - max
124
+ keep_nbest_models: 10
125
+ log_interval: 50
126
+ unused_parameters: true
127
+
128
+ optim: adam
129
+ optim_conf:
130
+ lr: 0.0005
131
+ scheduler: warmuplr
132
+ scheduler_conf:
133
+ warmup_steps: 30000
134
+
135
+ dataset: AudioDatasetHotword
136
+ dataset_conf:
137
+ seaco_id: 8377
138
+ index_ds: IndexDSJsonl
139
+ batch_sampler: DynamicBatchLocalShuffleSampler
140
+ batch_type: example # example or length
141
+ batch_size: 1 # if batch_type is example, batch_size is the numbers of samples; if length, batch_size is source_token_len+target_token_len;
142
+ max_token_length: 2048 # filter samples if source_token_len+target_token_len > max_token_length,
143
+ buffer_size: 500
144
+ shuffle: True
145
+ num_workers: 0
146
+
147
+ tokenizer: CharTokenizer
148
+ tokenizer_conf:
149
+ unk_symbol: <unk>
150
+ split_with_space: true
151
+
152
+
153
+ ctc_conf:
154
+ dropout_rate: 0.0
155
+ ctc_type: builtin
156
+ reduce: true
157
+ ignore_nan_grad: true
158
+
159
+ normalize: null
160
+
wer/paraformer-zh/configuration.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "framework": "pytorch",
3
+ "task" : "auto-speech-recognition",
4
+ "model": {"type" : "funasr"},
5
+ "pipeline": {"type":"funasr-pipeline"},
6
+ "model_name_in_hub": {
7
+ "ms":"iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
8
+ "hf":""},
9
+ "file_path_metas": {
10
+ "init_param":"model.pt",
11
+ "config":"config.yaml",
12
+ "tokenizer_conf": {"token_list": "tokens.json", "seg_dict_file": "seg_dict"},
13
+ "frontend_conf":{"cmvn_file": "am.mvn"}}
14
+ }
wer/paraformer-zh/example/asr_example.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ffa478de2cd570dd54e8762008cd6bbde9871fd79757f1cdbbec7d6b7b49274
3
+ size 144770
wer/paraformer-zh/example/hotword.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 魔搭
wer/paraformer-zh/fig/res.png ADDED

Git LFS Details

  • SHA256: 1f59ebc6a86733896b2b84110e2aae5625754382762bf1324e017d89a152c2fb
  • Pointer size: 131 Bytes
  • Size of remote file: 197 kB
wer/paraformer-zh/fig/seaco.png ADDED

Git LFS Details

  • SHA256: 6886864eb6bcc6487a17111b5e3353bd72e7c78fda98c27cf47faa35eafbdcaf
  • Pointer size: 131 Bytes
  • Size of remote file: 171 kB
wer/paraformer-zh/model.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d491689244ec5dfbf9170ef3827c358aa10f1f20e42a7c59e15e688647946d1
3
+ size 989763045
wer/paraformer-zh/seg_dict ADDED
The diff for this file is too large to render. See raw diff
 
wer/paraformer-zh/tokens.json ADDED
The diff for this file is too large to render. See raw diff