File size: 79,412 Bytes
724be6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
# Copyright (c) Meta Platforms, Inc. and affiliates.

from enum import Enum
from typing import Any, List, Optional, Tuple, Union

import torch
from pydantic import model_validator
from torch import nn
from torch.nn.attention.flex_attention import create_block_mask, BlockMask, flex_attention
import json
import logging

import torch
import torch.nn
import torch.nn as nn
from torch.nn import functional as F

import os
from contextlib import nullcontext

SEP = " "
BOS_ID: int = 1
EOS_ID: int = 2
PAD_ID: int = -1
BOE_ID: int = 0
BPE_ID: int = 3
OFFSET: int = 4

BYTE_UNITS: int = 256

RMSNorm = nn.RMSNorm

logger = logging.getLogger()

from .configuration_blt import (
    BLTConfig,
    PatchingModeEnum,
    InitStdFactor,
)

from ...modeling_utils import PreTrainedModel
from ...utils import logging as transformers_logging

flex_attention_comp = flex_attention


def causal_mask(b, h, q_idx, kv_idx):
    return q_idx >= kv_idx


def create_causal_mask(
    seqlen,
    attn_impl: str,
    attn_bias_type: str | None,
    *,
    eos_id: int | None = None,
    tokens: torch.Tensor | None = None,
    sliding_window: int | None = None,
):
    if attn_impl == "sdpa":
        BLT_SUPPRESS_ATTN_ERROR = int(os.environ.get("BLT_SUPPRESS_ATTN_ERROR", 0))

        if attn_bias_type == "causal":
            return "causal"

        if BLT_SUPPRESS_ATTN_ERROR == 1:
            return "causal"
        else:
            raise ValueError(
                "SDPA attention being used, which doesn't have specialized attention implementations for block_causal and local_block_causal attention. To suppress this error and run the model anyway, set the environment variable BLT_SUPPRESS_ATTN_ERROR=1"
            )
    elif attn_impl == "flex_attention":
        return create_block_mask(causal_mask, None, None, seqlen, seqlen)
    else:
        raise NotImplementedError(
            f"Attention {attn_impl} with {sliding_window} sliding window not implemented"
        )

def cross_entropy(pred, target, **kwargs):
    return F.nll_loss(
        F.log_softmax(pred.flatten(end_dim=-2).float(), -1),
        target.flatten(end_dim=-1),
        **kwargs,
    )


def repeat_kv(x: torch.Tensor, n_rep: int, dim: int) -> torch.Tensor:
    """torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
    assert dim == 2, "Only dim=2 is supported. Check the implementation for other dims."
    bs, slen, n_kv_heads, head_dim = x.shape
    if n_rep == 1:
        return x
    return (
        x[:, :, :, None, :]
        .expand(bs, slen, n_kv_heads, n_rep, head_dim)
        .reshape(bs, slen, n_kv_heads * n_rep, head_dim)
    )


def precompute_freqs_cis(
    dim: int,
    end: int,
    theta: float = 10000.0,
    rope_use_fp32_in_outer_product: bool = False,
):
    """
    Precompute the frequency tensor for complex exponentials (cis) with given dimensions.

    This function calculates a frequency tensor with complex exponentials using the given dimension 'dim'
    and the end index 'end'. The 'theta' parameter scales the frequencies.
    The returned tensor contains complex values in complex64 data type.

    Args:
        dim (int): Dimension of the frequency tensor.
        end (int): End index for precomputing frequencies.
        theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.

    Returns:
        torch.Tensor: Precomputed frequency tensor with complex exponentials.
    """
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
    t = torch.arange(end, device=freqs.device)
    if rope_use_fp32_in_outer_product:
        t = t.to(torch.float32)

    freqs = torch.outer(t, freqs).float()

    cos, sin = freqs.cos(), freqs.sin()

    return torch.stack((cos, -sin, sin, cos), dim=-1).view(*freqs.size(), 2, 2)


def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor, seq_dim: int):
    """
    Reshape frequency tensor for broadcasting it with another tensor.

    This function reshapes the frequency tensor to have the same shape as the target tensor 'x'
    for the purpose of broadcasting the frequency tensor during element-wise operations.

    Args:
        freqs_cis (torch.Tensor): Frequency tensor to be reshaped.
        x (torch.Tensor): Target tensor for broadcasting compatibility.
        seq_dim (int): Sequence dimension index.

    Returns:
        torch.Tensor: Reshaped frequency tensor.
    """
    ndim = x.ndim
    assert 0 <= seq_dim < ndim
    assert freqs_cis.shape == (
        x.shape[seq_dim],
        x.shape[-3],
        2,
        2,
    ), f"freqs_cis vs x: {(freqs_cis.shape, x.shape)}"
    shape = [
        d if i == seq_dim or i == ndim - 3 else 1 for i, d in enumerate(x.shape[:-2])
    ] + [2, 2]
    return freqs_cis.view(*shape)


def apply_rotary_emb(
    xq: torch.Tensor,
    xk: torch.Tensor,
    seq_dim: int,
    freqs_cis: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
    xq_ = xq.reshape(*xq.shape[:-1], -1, 1, 2)  # B S H D -> B S H D/2 1 2
    xk_ = xk.reshape(*xk.shape[:-1], -1, 1, 2)  # B S H D -> B S H D/2 1 2
    freqs_cis = reshape_for_broadcast(
        freqs_cis, xq_, seq_dim
    ).float()  # S D/2 2 2 -> 1 S 1 D/2 2 2
    xq_out = (xq_ * freqs_cis).sum(5).flatten(3)
    xk_out = (xk_ * freqs_cis).sum(5).flatten(3)
    return xq_out.type_as(xq), xk_out.type_as(xk)


# Rotary embedding as in xformer, see if torchtrain implementation is not better. Also might be usefull to make it work with batch*seqlen collapsed.
class RotaryEmbedding(torch.nn.Module):
    """
    RotaryEmbedding Module
    """

    def __init__(
        self,
        theta: float,
        head_dim: int,
        max_seqlen: int = 1024,
        rope_use_fp32_in_outer_product: bool = False,
    ):
        super().__init__()

        self.theta = theta
        self.head_dim = head_dim
        self.max_seqlen = max_seqlen
        self.rope_use_fp32_in_outer_product = rope_use_fp32_in_outer_product

        self.register_buffer(
            "freqs_cis",
            precompute_freqs_cis(
                dim=head_dim,
                end=max_seqlen,
                theta=theta,
                rope_use_fp32_in_outer_product=self.rope_use_fp32_in_outer_product,
            ),
            persistent=False,
        )

    def reset_parameters(self):
        self.freqs_cis[...] = precompute_freqs_cis(
            dim=self.head_dim,
            end=self.max_seqlen,
            theta=self.theta,
            rope_use_fp32_in_outer_product=self.rope_use_fp32_in_outer_product,
        )

    def forward(
        self, seqlen: Optional[int] = None, tok_idx: Optional[torch.Tensor] = None
    ):
        """
        Return freqs_cis corresponding to consecutive seqlen positions or the corresponding tok_idx positions
        Args:
            seqlen (int): Contiguous sequence length
            tok_idx (torch.Tensor[int]): Position indices of each token this overrides seqlen

        Returns:
            Tuple(torch.Tensor, torch.Tensor): Embedded input tensor and freqs_cis
        """
        test = (seqlen is not None) or (tok_idx is not None)
        assert test, "Should provide atleast seqlen or tok_idx"
        if tok_idx is not None:
            return self.freqs_cis[tok_idx]
        elif seqlen is not None:
            return self.freqs_cis[0:seqlen]


class BLTAttention(nn.Module):
    def __init__(
        self,
        dim: int,
        head_dim: int,
        n_heads: int,
        n_kv_heads: int,
        rope_theta: float,
    ):
        super().__init__()

        self.dim = dim
        self.head_dim = head_dim
        self.rope_theta = rope_theta

        self.n_heads = n_heads
        self.n_kv_heads = n_kv_heads
        self.heads_per_group = self.n_heads // self.n_kv_heads

        self.wq = nn.Linear(
            dim,
            n_heads * head_dim,
            bias=False,
        )
        self.wk = nn.Linear(
            dim,
            n_kv_heads * head_dim,
            bias=False,
        )
        self.wv = nn.Linear(
            dim,
            n_kv_heads * head_dim,
            bias=False,
        )

        self.wo = nn.Linear(
            n_heads * head_dim,
            dim,
            bias=False,
        )

    def forward(
        self,
        x: torch.Tensor,
        freq_cis: torch.Tensor,
        tok_idx: Optional[torch.Tensor] = None,
        mask: Optional[Union[BlockMask, str]] = None,
        attn_impl: str = "sdpa",
    ) -> torch.Tensor:
        # B S D
        bsz, seq_len, dim = x.shape
        xq = self.wq(x.view_as(x))
        xk = self.wk(x.view_as(x))
        xv = self.wv(x.view_as(x))

        output_shape = xq.shape
        # B S D -> B S H D
        xq = xq.view(bsz, seq_len, self.n_heads, self.head_dim)
        xk = xk.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
        xv = xv.view(bsz, seq_len, self.n_kv_heads, self.head_dim)

        xq, xk = apply_rotary_emb(xq, xk, 1, freq_cis[0:seq_len])

        # This condition helps us be easily compatible
        # with inference by adding a pluggable KVCache
        if hasattr(self, "kv_cache"):
            xk, xv = self.kv_cache.update(xk, xv, tok_idx)

        xk = repeat_kv(xk, self.heads_per_group, dim=2)
        xv = repeat_kv(xv, self.heads_per_group, dim=2)

        if attn_impl == "flex_attention":
            assert mask is None or isinstance(mask, BlockMask)
            xq, xk, xv = map(lambda e: e.transpose(1, 2), (xq, xk, xv))
            output = flex_attention_comp(xq, xk, xv, block_mask=mask)
            output = output.transpose(1, 2).contiguous()  # B H S D -> B S H D

        elif attn_impl == "sdpa":
            xq, xk, xv = map(lambda e: e.transpose(1, 2), (xq, xk, xv))
            assert mask is None or isinstance(mask, (str, torch.Tensor))
            is_causal = (mask == "causal") if isinstance(mask, str) else False
            mask = mask.to(xq.device) if isinstance(mask, torch.Tensor) else None
            output = F.scaled_dot_product_attention(
                xq,
                xk,
                xv,
                is_causal=is_causal,
                attn_mask=mask,
            )
            output = output.transpose(1, 2).contiguous()  # B H S D -> B S H D
        else:
            raise NotImplementedError(
                f"Attention implementation {attn_impl} not supported"
            )
        
        output_reshaped = output.reshape(output_shape)

        output = self.wo(output_reshaped)

        return output

    def reset_parameters(self, init_std=None, factor=1.0):
        init_std = init_std or (self.dim ** (-0.5)) / factor

        for w in [self.wq, self.wk, self.wv]:
            nn.init.trunc_normal_(
                w.weight,
                mean=0.0,
                std=init_std,
                a=-3 * init_std,
                b=3 * init_std,
            )

        nn.init.trunc_normal_(
            self.wo.weight,
            mean=0.0,
            std=init_std,
            a=-3 * init_std,
            b=3 * init_std,
        )


class BLTMLP(nn.Module):
    def __init__(
        self,
        dim: int,
        hidden_dim: int,
        multiple_of: int,
        ffn_dim_multiplier: Optional[float],
        mp_size: int = 1,
    ):
        super().__init__()

        hidden_dim = int(2 * hidden_dim / 3)
        if ffn_dim_multiplier is not None:
            hidden_dim = int(ffn_dim_multiplier * hidden_dim)
        hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
        assert hidden_dim % mp_size == 0

        self.dim = dim
        self.hidden_dim = hidden_dim

        self.w1 = nn.Linear(
            dim,
            hidden_dim,
            bias=False,
        )
        self.w3 = nn.Linear(
            dim,
            hidden_dim,
            bias=False,
        )
        self.w2 = nn.Linear(
            hidden_dim,
            dim,
            bias=False,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # B S D
        x1 = self.w1(x.view_as(x))
        x3 = self.w3(x.view_as(x))
        output = self.w2(F.silu(x1) * x3)
        return output

    def reset_parameters(self, init_std=None, factor=1.0):
        in_init_std = init_std or (self.dim ** (-0.5)) / factor
        out_init_std = init_std or (self.hidden_dim ** (-0.5)) / factor

        nn.init.trunc_normal_(
            self.w1.weight,
            mean=0.0,
            std=in_init_std,
            a=-3 * in_init_std,
            b=3 * in_init_std,
        )
        nn.init.trunc_normal_(
            self.w2.weight,
            mean=0.0,
            std=out_init_std,
            a=-3 * out_init_std,
            b=3 * out_init_std,
        )
        nn.init.trunc_normal_(
            self.w3.weight,
            mean=0.0,
            std=in_init_std,
            a=-3 * in_init_std,
            b=3 * in_init_std,
        )


class BLTTransformerLayer(nn.Module):
    def __init__(self, args):
        super().__init__()

        # Extract parameters from dictionary
        dim = args['dim']
        n_heads = args['n_heads']
        head_dim = args['head_dim']
        n_kv_heads = args['n_kv_heads']
        rope_theta = args['rope_theta']
        multiple_of = args['multiple_of']
        ffn_dim_multiplier = args['ffn_dim_multiplier']
        norm_eps = args['norm_eps']

        assert (head_dim is not None) or (
            n_heads is not None
        ), "Should specify at least head_dim or n_heads"
        self.head_dim = head_dim or dim // n_heads
        self.n_heads = n_heads or dim // head_dim
        self.n_kv_heads = n_kv_heads or self.n_heads

        assert n_heads % self.n_kv_heads == 0
        assert dim % n_heads == 0

        self.attention = BLTAttention(
            dim=dim,
            head_dim=self.head_dim,
            n_heads=self.n_heads,
            n_kv_heads=self.n_kv_heads,
            rope_theta=rope_theta,
        )
        self.feed_forward = BLTMLP(
            dim=dim,
            hidden_dim=4 * dim,
            multiple_of=multiple_of,
            ffn_dim_multiplier=ffn_dim_multiplier,
        )
        self.attention_norm = RMSNorm(dim, eps=norm_eps)
        self.ffn_norm = RMSNorm(dim, eps=norm_eps)

    def forward(
        self,
        x: torch.Tensor,
        freq_cis: torch.Tensor,
        tok_idx: Optional[torch.Tensor] = None,
        mask: Optional[Union[BlockMask, str]] = None,
        attn_impl: str = "sdpa",
    ) -> torch.Tensor:
        norm_x = self.attention_norm(x)
        attn_out = self.attention(
            norm_x,
            freq_cis,
            tok_idx=tok_idx,
            mask=mask,
            attn_impl=attn_impl,
        )
        h = x + attn_out
        h_norm = self.ffn_norm(h)
        out = h + self.feed_forward(h_norm)
        return out

    def init_weights(self, init_std=None, factor=1.0):
        self.attention.reset_parameters(init_std, factor)
        self.attention_norm.reset_parameters()

        self.feed_forward.reset_parameters(init_std, factor)
        self.ffn_norm.reset_parameters()


def rightpad(seq, pad_id, max_len):
    return seq + [pad_id] * (max_len - len(seq))


def check_non_zero_after_zero(tensor):
    zero_mask = tensor == 0
    shifted_mask = torch.cat(
        [
            torch.zeros(tensor.shape[0], 1, dtype=torch.bool, device=tensor.device),
            zero_mask[:, :-1],
        ],
        dim=1,
    )
    non_zero_after_zero = (tensor != 0) & shifted_mask
    return non_zero_after_zero.any()


def fill_tokens(tokens, patch_size, fill_id):
    batch_size, seq_len = tokens.shape
    if seq_len % patch_size == 0:
        return tokens
    else:
        remaining = patch_size - seq_len % patch_size
        final_padding = tokens.new(batch_size, remaining).fill_(fill_id)
        return torch.cat((tokens, final_padding), dim=1)


def rolling_polynomial_hash(t, hash_func_nb: int = 0):
    primes = [
        1000000007,
        5915587277,
        1500450271,
        3267000013,
        5754853343,
        4093082899,
        9576890767,
        3628273133,
        2860486313,
        5463458053,
        3367900313,
    ]
    prime = torch.tensor(primes[hash_func_nb], dtype=torch.int64, device=t.device)
    prime_powers = torch.stack([prime**i for i in range(t.shape[-1])])
    return torch.sum(t * prime_powers, dim=-1)

def byte_group_hash_function(
    x: torch.Tensor, group_size: int = 2, hash_func_nb: int = 0, max_hash: int = 30000
):
    """
    Returns a hash of the input x and maps it to a value in the range [0, max_hash].

    expects: x of shape (batch_size, seq_len) with values as ids in the token vocab.
    returns a tensor  of shape (batch_size, seq_len) with values in the range [0, max_hash].

    Note: max hash can make a big difference on the number of collisions.
    """
    with torch.no_grad():
        bs, seq_len = x.shape
        prefix = torch.zeros(bs, group_size - 1, dtype=torch.int64, device=x.device)
        x = torch.cat([prefix, x], dim=1)
        windows = x.unfold(1, group_size, 1)
        # hashes = get_rolling_polynomial_hash_fn(hash_func_nb, group_size)(windows)
        hashes = rolling_polynomial_hash(windows, hash_func_nb)
        hash_values_range = hashes % max_hash
    hash_values_range.requires_grad = False
    return hash_values_range


def create_patch_mask_from_ids(
    patch_ids, num_patches, window=None, patches_as_queries=False
):
    """
    Creates a tensor of shape [bs, seq_len, num_patches] where each element at position (i, j, k)
    is True if the patch id at position (i, j) is less than or equal to k.
    Args:
        patch_ids (torch.Tensor): Tensor of shape [bs, seq_len] containing patch ids.
        num_patches (int): Total number of patches.
        window (int): If not None, only considers patches within a window of size window.
        patches_as_queries (bool): If True, the patches are used as queries
    Returns:
        torch.Tensor: Tensor of shape [bs, q_len, kv_len] with the desired mask.
    """
    bs, seq_len = patch_ids.shape
    if not patches_as_queries:
        q_ids = patch_ids.unsqueeze(-1).expand(bs, seq_len, num_patches)
        kv_ids = (
            torch.arange(num_patches, device=patch_ids.device)
            .unsqueeze(0)
            .unsqueeze(0)
            .expand(bs, seq_len, num_patches)
        )
    else:
        kv_ids = patch_ids.unsqueeze(1).expand(bs, num_patches, seq_len)
        q_ids = (
            torch.arange(num_patches, device=patch_ids.device)
            .unsqueeze(0)
            .unsqueeze(-1)
            .expand(bs, num_patches, seq_len)
        )
    if window is None:
        mask = q_ids == kv_ids
    else:
        mask = (kv_ids <= q_ids) & (q_ids < kv_ids + window)
    return mask


def cross_attn_mask(
    patch_ids,
    patch_lengths,
    N,
    patches_as_queries=False,
    cross_attn_k=1,
    window=None,
    block_mask=True,
):
    bs = patch_ids.shape[0]
    with torch.no_grad():
        # Create the patch mask
        cross_mask = create_patch_mask_from_ids(
            patch_ids,
            patch_lengths.shape[1],
            window=window,
            patches_as_queries=patches_as_queries,
        ).repeat_interleave(cross_attn_k, dim=1 if patches_as_queries else -1)
        q_len = patch_lengths.shape[1] * cross_attn_k if patches_as_queries else N
        kv_len = N if patches_as_queries else patch_lengths.shape[1] * cross_attn_k
        assert cross_mask.shape == (
            bs,
            q_len,
            kv_len,
        ), f"{cross_mask.shape} != {(bs, q_len, kv_len)}"
        block_mask = None
        if block_mask:

            def patch_mask(b, h, q_idx, kv_idx):
                return cross_mask[b, q_idx, kv_idx]

            block_mask = create_block_mask(
                patch_mask,
                B=bs,
                H=None,
                Q_LEN=q_len,
                KV_LEN=kv_len,
                _compile=True,
            )
            return block_mask
        else:
            return torch.where(
                cross_mask, torch.tensor(0.0), torch.tensor(float("-inf"))
            ).unsqueeze(
                1
            )  # [bs, 1, q_len, kv_len]


def get_blt_input(
    tokens: torch.Tensor,
    enforce_patch_size_multiple: bool,
    nb_boe: torch.Tensor,
    patch_size: int,
    boe_id: int,
):
    """
        This function returns X_et, X_gt and X_dt, the encoder, global, and decoder
    tokens respectively.

    Consider the input and target sequences:
    X=[3,4,5,6,7,eos,bos,8,9,10,eos,bos,11,12,13]
    Y=[4,5,6,7,eos,bos,8,9,10,eos,bos,11,12,13,14]
    with patch_size=4

    Note 1: that there will be no special tokens introduced at the patch level.
    Note 2: X_e needs to be trimmed to be passed to Global

    Current without boe:
    X_et = [[boe,boe,boe,boe] [3,4,5,6],      [7,eos,bos,8],    [9,10,eos,bos] [11,12,13, pad]]
    X_g =  [[boe,boe,boe,boe] [3,4,5,6],      [7,eos,bos,8],    [9,10,eos,bos] [11,12,13, pad]] # remove last glob patch
    X_dt = [[3,4,5,6]         [7,eos,bos,8],  [9,10,eos,bos],   [11,12,13]]
    Y =    [[4,5,6,7]         [eos,bos,8,9],  [10,eos,bos,11],  [12,13,14]]

    --> lag fix:
    X_et = [[boe,boe,boe,3]   [4,5,6,7],      [eos,bos,8,9],    [10,eos,bos,11] [12,13,pad,pad]]
    X_g =  [[boe,boe,boe,3]   [4,5,6,7],      [eos,bos,8,9],    [10,eos,bos,11]]
    X_dt = [[3,4,5,6]         [7,eos,bos,8],  [9,10,eos,bos],   [11,12,13]]
    Y =    [[4,5,6,7]    	  [eos,bos,8,9],  [10,eos,bos,11],  [12,13,14]]

    Dynamic (current):
    X = [3,4,5,6,7,eos,bos,8,9,10,eos,bos]
    Y = [4,5,6,7,eos,bos,8,9,10,eos,bos,11]

    entropy patching:
    input: 7, bos, 9, 10
    pred (high entropy): eos, 8, 10, eos

    X_et = [[boe,3,4,5,6,7,eos,bos,8,9,10,eos,bos]
    X_g =  [[boe],      [3,4,5,6], [7,eos],[bos,8],[9],     [10,eos]]
    X_dt = [[3,4,5,6],  [7,eos],   [bos,8],[9],    [10,eos],[bos]]
    Y =    [4,5,6,7,eos,bos,8,9,10,eos,bos,11]

    --> lag fix no boe (force single byte first patch):
    X_et = [[3,4,5,6,7,eos,bos,8,9,10,eos,bos,11,12]
    X_g =  [[3],        [4,5,6,7], [eos,bos],[8,9], [10],       [eos,bos],      [11,12]] # remove last global patch
    X_dt = [[3,4,5,6],  [7,eos],   [bos,8], [9],    [10,eos],   [bos,11,12]]
    Y =    [4,5,6,7,    eos,bos,    8,9,    10,     eos,bos,    11,12,13]

    input: 4, 7, bos, 9, 10
    pred (high entropy): 5, eos, 8, 10, eos

    X_et = [[3,4,5,6,7,eos,bos,8,9,10,eos,bos,11,12]
    X_g =  [[3],        [4]   ,   [5,6,7], [eos,bos],[8,9], [10],       [eos,bos],      [11,12]] # remove last global patch
    X_dt = [[3]         [4,5,6],  [7,eos],   [bos,8], [9],    [10,eos],   [bos,11,12]]
    Y =    [4,]         [5,6,7,    eos,bos,    8,9,    10,     eos,bos,    11,12,13]

    Handle the last byte properly.
    patch_lengths = [1, 1,         3,      2,         2      1           2               2         1]
    X_et = [[3,4,5,6,7,eos,bos,8,9,10,eos,bos,11,12]
    X_g =  [[3],        [4]   ,   [5,6,7], [eos,bos],[8,9], [10],       [eos,bos],      [11,12]] # do not remove last global patch
    X_dt = [[3]         [4,5,6],  [7,eos],   [bos,8], [9],    [10,eos],   [bos,11]       [12]]
    Y =    [4,]         [5,6,7,    eos,bos,    8,9,    10,     eos,bos,    11,12,        13]]


    bpe delim
    X_et = [[3,4,5,6,7,<d>,eos,bos,<d>,8,9,<d>,10,<d>,eos,bos,11,12]
    X_g =  [[3],          [4,5,6,7,<d>],     [eos,bos,<d>], ..
    X_dt = [[3,4,5,6,7],  [<d>,eos,bos],     [<d>,bos,8], ..
    Y =    [4,5,6,7,<d>,    eos,bos,<d>       8,9,<d>, ..


    Note 1: that there will be no special tokens introduced at the patch level.
    Note 2: X_e needs to be trimmed to be passed to Global
    """
    batch_size, seq_len = tokens.shape
    local_encoder_tokens = tokens
    local_decoder_tokens = tokens

    if nb_boe > 0:
        padded_patch = tokens.new(batch_size, nb_boe).fill_(boe_id)
        local_encoder_tokens = torch.cat((padded_patch, local_encoder_tokens), dim=1)
    # global_tokens = tokens.new(batch_size, ((seq_len-1) // patch_size)+1).fill_(boe_id)

    # create global tokens, contains boe tokens and eos
    # padded_local_encoder_tokens = fill_tokens(local_encoder_tokens, patch_size, boe_id)
    # patches = padded_local_encoder_tokens.view(batch_size, -1, patch_size)
    # global_tokens = (patches.eq(eos_id).any(dim=2).int() * eos_id)[:, 1:]
    # global_tokens += global_tokens.eq(0).int() * boe_id
    # TODO: fix this when we want to use block causal in the global.

    if enforce_patch_size_multiple and local_encoder_tokens.shape[-1] % patch_size != 0:
        local_encoder_tokens = fill_tokens(local_encoder_tokens, patch_size, boe_id)

    return local_encoder_tokens, None, local_decoder_tokens


class LocalModelBase(nn.Module):
    def __init__(self, config: BLTConfig, component_type: str = "encoder"):
        super().__init__()
        
        # Store config for later use
        self.config = config

        # Use component-specific dimensions
        if component_type == "encoder":
            self.dim = config.dim_local_encoder
            self.n_layers = config.n_layers_local_encoder
            self.n_heads = config.n_heads_local_encoder
            self.max_seqlen = config.max_encoder_seq_length or config.max_seqlen
            self.attn_bias_type = "local_block_causal"
            self.sliding_window = config.local_attention_window_len
        elif component_type == "decoder":
            self.dim = config.dim_local_decoder
            self.n_layers = config.n_layers_local_decoder
            self.n_heads = config.n_heads_local_decoder
            self.max_seqlen = config.max_encoder_seq_length or config.max_seqlen
            self.attn_bias_type = "local_block_causal"
            self.sliding_window = config.local_attention_window_len
        else:
            raise ValueError(f"Unknown component_type: {component_type}")

        self.dropout = config.dropout
        self.vocab_size = config.vocab_size + config.pm_size
        self.patch_size = config.patch_size

        self.attn_impl = config.attn_impl
        self.use_rope = config.use_rope
        self.init_std_factor = config.init_std_factor
        self.init_base_std = config.init_base_std
        self.cross_attn_encoder = getattr(config, "cross_attn_encoder", None)
        self.cross_attn_decoder = getattr(config, "cross_attn_decoder", None)
        self.cross_attn_k = getattr(config, "cross_attn_k", None)
        self.eos_id = config.eos_token_id

        self.boe_id = BOE_ID
        
        # Initialize cross attention layers as None (will be set by subclasses if needed)
        self.cross_attn_layers = None

        # Create parameter dict for BLTTransformerLayers
        layer_params = {
            'dim': self.dim,
            'n_heads': self.n_heads,
            'head_dim': config.head_dim,
            'n_kv_heads': getattr(config, 'n_kv_heads', None),
            'rope_theta': config.rope_theta,
            'multiple_of': getattr(config, 'multiple_of', 256),
            'ffn_dim_multiplier': getattr(config, 'ffn_dim_multiplier', None),
            'norm_eps': config.norm_eps,
        }

        self.layers = nn.ModuleList(
            [BLTTransformerLayer(layer_params) for _ in range(self.n_layers)]
        )

        if not self.use_rope:
            self.pos_embeddings = nn.Embedding(2048, self.dim)  # fallback max_length
        else:
            self.rope = RotaryEmbedding(
                theta=config.rope_theta,
                head_dim=config.head_dim or self.dim // self.n_heads,
                max_seqlen=self.max_seqlen,
                rope_use_fp32_in_outer_product=config.rope_use_fp32_in_outer_product,
            )
            self.pos_embeddings = None

        # Set dimension-specific embedding dimensions
        if component_type == "encoder":
            self.dim_token_emb = config.encoder_dim_token_emb
            self.dim_patch_emb = config.encoder_dim_patch_emb
        elif component_type == "decoder":
            self.dim_token_emb = config.decoder_dim_token_emb
            self.dim_patch_emb = config.dim_global

        self.token_embedding_projection = (
            nn.Linear(self.dim_token_emb, self.dim, bias=False)
            if self.dim_token_emb is not None and self.dim_token_emb != self.dim
            else None
        )

        self.patch_embedding_projection = self._create_patch_projection(config)

    def _should_create_patch_projection(self, config: BLTConfig):
        dimension_mismatch = (
            self.dim_patch_emb is not None and self.dim_patch_emb != self.dim
        )

        # Check cross attention conditions
        cross_attn_conditions = (
            config.cross_attn_encoder and config.cross_attn_init_by_pooling
        ) or (config.cross_attn_decoder and config.cross_attn_init_by_pooling)

        return dimension_mismatch or cross_attn_conditions

    def _create_patch_projection(self, config):
        if not self._should_create_patch_projection(config):
            return None

        output_dim = self.dim_token_emb * (self.cross_attn_k or 1)

        return nn.Linear(
            in_features=self.dim_patch_emb,
            out_features=output_dim,
            bias=False,
        )

    def apply_embedding(self, tokens, embeds):
        if embeds is not None:
            return embeds
        else:
            return self.tok_embeddings(tokens)

    def init_weights(self, init_std=None):
        self.rope.reset_parameters()
        if hasattr(self, "norm"):
            self.norm.reset_parameters()

        init_std = init_std or (self.dim ** (-0.5))
        if hasattr(self, "tok_embeddings"):
            nn.init.trunc_normal_(
                self.tok_embeddings.weight,
                mean=0.0,
                std=init_std,
                a=-3 * init_std,
                b=3 * init_std,
            )
        if self.pos_embeddings is not None:
            nn.init.trunc_normal_(
                self.pos_embeddings.weight,
                mean=0.0,
                std=init_std,
                a=-3 * init_std,
                b=3 * init_std,
            )

        for depth, layer in enumerate(self.layers):
            factor = self.config.get_init_std_factor(depth)
            layer.init_weights(self.init_base_std, factor)

        if hasattr(self, "output"):
            nn.init.trunc_normal_(
                self.output.weight,
                mean=0.0,
                std=init_std,
                a=-3 * init_std,
                b=3 * init_std,
            )

        if self.token_embedding_projection is not None:
            nn.init.trunc_normal_(
                self.token_embedding_projection.weight,
                mean=0.0,
                std=init_std,
                a=-3 * init_std,
                b=3 * init_std,
            )

        if self.patch_embedding_projection is not None:
            patch_emb_std = self.dim_patch_emb ** (-0.5)
            nn.init.trunc_normal_(
                self.patch_embedding_projection.weight,
                mean=0.0,
                std=patch_emb_std,
                a=-3 * patch_emb_std,
                b=3 * patch_emb_std,
            )

        if self.cross_attn_layers is not None:
            for depth, layer in enumerate(self.cross_attn_layers):
                factor = self.config.get_init_std_factor(depth)
                layer.init_weights(None, factor)


class LocalEncoder(LocalModelBase):
    def __init__(self, config: BLTConfig):
        super().__init__(config, component_type="encoder")

        self.apply_transformer = config.use_local_encoder_transformer
        self.downsampling_by_pooling = config.downsampling_by_pooling
        self.expects_hash_embeddings = config.encoder_hash_byte_group_size is not None
        self.cross_attn_encoder = config.cross_attn_encoder
        self.cross_attn_all_layers_encoder = config.cross_attn_all_layers_encoder
        self.cross_attn_init_by_pooling = config.cross_attn_init_by_pooling
        self.cross_attn_nheads = config.cross_attn_nheads

        self.tok_embeddings = nn.Embedding(self.vocab_size, self.dim)

        if self.cross_attn_encoder:
            self.cross_attn_layers = torch.nn.ModuleList()
            layers_to_add = self.n_layers if self.cross_attn_all_layers_encoder else 1
            for _ in range(layers_to_add):
                self.cross_attn_layers.append(
                    BLTCrossAttention(
                        dim=self.dim,
                        head_dim=self.dim // self.cross_attn_nheads,
                        n_heads=self.cross_attn_nheads,
                        n_kv_heads=self.cross_attn_nheads,
                        norm_eps=config.norm_eps,
                    )
                )

    def apply_embedding(self, tokens, embeds):
        if embeds is not None:
            assert (
                self.expects_hash_embeddings
            ), "Not expecting embeddings to be passed."
            return embeds
        else:
            return self.tok_embeddings(tokens)

    def forward(
        self,
        tokens: torch.Tensor,
        embeds: Optional[torch.Tensor] = None,
        patch_embeds: Optional[torch.Tensor] = None,
        mask: Optional[Union["BlockMask", torch.Tensor, str]] = None,
        cross_mask: Optional[torch.Tensor] = None,
        num_patches: Optional[int] = None,
        patch_ids: Optional[torch.Tensor] = None,
        cache: Optional[List[Tuple[torch.Tensor, torch.Tensor, int]]] = None,
    ):
        """ """
        bs, seqlen = tokens.shape
        if mask is None:
            mask = create_causal_mask(
                seqlen,
                self.attn_impl,
                "local_block_causal",
                sliding_window=self.sliding_window,
                tokens=tokens,
                eos_id=self.eos_id,
            )

        h = self.apply_embedding(tokens, embeds)
        freqs_cis = self.rope(seqlen=seqlen) if self.use_rope else None

        h = F.dropout(h, p=self.dropout, training=self.training)

        for i, layer in enumerate(self.layers):
            h = layer(h, mask=mask, freq_cis=freqs_cis, attn_impl=self.attn_impl)
            # check if cross attention should be applied to either all layer or only the last layer
            if self.cross_attn_encoder and (
                i == len(self.layers) - 1 or self.cross_attn_all_layers_encoder
            ):
                # apply pooling and project
                if self.cross_attn_init_by_pooling and patch_embeds is None:
                    patch_embeds = self.patch_reduce(h, num_patches, "amax", patch_ids)
                    if self.patch_embedding_projection is not None:
                        patch_embeds = self.patch_embedding_projection(patch_embeds)
                        patch_embeds = patch_embeds.reshape(
                            bs, patch_embeds.shape[1] * self.cross_attn_k, self.dim
                        )

                layer_idx = i if self.cross_attn_all_layers_encoder else 0
                patch_embeds_cross = self.cross_attn_layers[layer_idx](
                    x=patch_embeds,
                    kv=h,
                    mask=cross_mask,
                )
                patch_embeds = patch_embeds + patch_embeds_cross

        h_residual = patch_embeds if self.cross_attn_encoder else None
        return (h, h_residual), cache



    def patch_reduce(self, h, max_num_patches, reduction, patch_ids):
        """
        Reduce variable length patches to single embedding per patch
        Note: this works with variable number of patches for different sequences in the batch
        It handles variable length patches by assuming that patch_lengths will be 0 for any
        extra patches on the *right*. Since there can be a variable number of patches
        this function also return the number of patches for each sequence in the batch.
        Any embeddings on the right that are not allocated to a patch
        (i.e. if the sum(patch_lengths[i]) < seq_len for any i)
        will be sent to a dummy patch, which is trimmed before returning.
        """
        bs, seq_len, emb_dim = h.shape

        patch_ids = patch_ids.unsqueeze(-1).expand(-1, -1, h.shape[-1])

        reduced_embs = torch.zeros(
            (bs, max_num_patches, emb_dim), dtype=h.dtype, device=h.device
        )
        reduced_embs = reduced_embs.scatter_reduce(
            src=h,
            dim=1,
            index=patch_ids,
            reduce=reduction,
            include_self=False,
        )
        reduced_embs = reduced_embs[:, :max_num_patches, :]

        return reduced_embs


class LocalDecoder(LocalModelBase):
    def __init__(self, config: BLTConfig):
        super().__init__(config, component_type="decoder")

        # Model configuration flags
        self.cross_attn_decoder = config.cross_attn_decoder
        self.cross_attn_all_layers_decoder = config.cross_attn_all_layers_decoder
        self.cross_attn_init_by_pooling = config.cross_attn_init_by_pooling
        self.cross_attn_nheads = config.cross_attn_nheads

        self.norm = RMSNorm(self.dim, eps=config.norm_eps)

        if self.cross_attn_decoder:
            self.cross_attn_layers = torch.nn.ModuleList()
            layers_to_add = self.n_layers if self.cross_attn_all_layers_decoder else 1
            for _ in range(layers_to_add):
                self.cross_attn_layers.append(
                    BLTCrossAttention(
                        dim=self.dim,
                        head_dim=self.dim // self.cross_attn_nheads,
                        n_heads=self.cross_attn_nheads,
                        n_kv_heads=self.cross_attn_nheads,
                        norm_eps=config.norm_eps,
                    )
                )

        self.output = nn.Linear(
            self.dim,
            config.vocab_size,
            bias=False,
        )

    def forward(
        self,
        tokens: torch.Tensor,
        embeds: Optional[torch.Tensor],
        patch_embeds: Optional[torch.Tensor] = None,
        mask: Optional[Union["BlockMask", torch.Tensor, str]] = None,
        cross_mask: Optional[torch.Tensor] = None,
        cache: Optional[List[Tuple[torch.Tensor, torch.Tensor, int]]] = None,
    ):
        bs, seqlen = tokens.shape
        assert embeds is not None, "Embeddings must be provided"

        if mask is None:
            mask = create_causal_mask(
                seqlen,
                self.attn_impl,
                "local_block_causal",
                sliding_window=self.sliding_window,
                tokens=tokens,
                eos_id=self.eos_id,
            )

        h = embeds

        if self.patch_embedding_projection is not None:
            assert patch_embeds is not None, "Patch embeddings must be passed."
            patch_embeds = self.patch_embedding_projection(patch_embeds)
            if self.cross_attn_k is not None:
                patch_embeds = patch_embeds.reshape(
                    bs, patch_embeds.shape[1] * self.cross_attn_k, self.dim
                )

        if patch_embeds is not None and not self.cross_attn_decoder:
            h = h + patch_embeds

        freqs_cis = self.rope(seqlen=seqlen) if self.use_rope else None

        h = F.dropout(h, p=self.dropout, training=self.training)
        for i, layer in enumerate(self.layers):
            if self.cross_attn_decoder and (
                i == 0 or self.cross_attn_all_layers_decoder
            ):
                # Use cross attention to extract info from patch_embeds into h
                h_cross = self.cross_attn_layers[i](
                    x=h,
                    kv=patch_embeds,
                    mask=cross_mask,
                )
                h = h + h_cross

            h = layer(h, mask=mask, freq_cis=freqs_cis, attn_impl=self.attn_impl)

        h_preds = self.norm(h)
        h_preds = F.dropout(h_preds, p=self.dropout, training=self.training)
        h_preds = self.output(h_preds)
        h_preds = h_preds.float()
        return h_preds, cache


class BLTCrossAttention(nn.Module):
    """
    BLTCrossAttention block to attend to the encoder states from the decoder.
    Rope is not supported.
    """

    def __init__(
        self,
        dim: int,
        head_dim: int,
        n_heads: int,
        n_kv_heads: int,
        norm_eps: float,
    ):
        super().__init__()

        self.dim = dim
        self.head_dim = head_dim

        self.n_heads = n_heads
        self.n_kv_heads = n_kv_heads
        self.heads_per_group = self.n_heads // self.n_kv_heads

        self.cross_attn_norm_q = nn.RMSNorm(dim, eps=norm_eps)
        self.cross_attn_norm_kv = RMSNorm(dim, eps=norm_eps)

        self.wq = nn.Linear(
            dim,
            n_heads * head_dim,
            bias=False,
        )
        self.wk = nn.Linear(
            dim,
            n_kv_heads * head_dim,
            bias=False,
        )
        self.wv = nn.Linear(
            dim,
            n_kv_heads * head_dim,
            bias=False,
        )

        self.wo = nn.Linear(
            n_heads * head_dim,
            dim,
            bias=False,
        )

    def forward(
        self,
        x: torch.Tensor,
        kv: torch.Tensor,
        mask: Optional[Union[BlockMask, str]] = None,
    ) -> torch.Tensor:
        # B S D
        bsz, seq_len, _ = x.shape
        _, slen_kv, _ = kv.shape
        x_norm = self.cross_attn_norm_q(x)
        kv = self.cross_attn_norm_kv(kv)

        xq = self.wq(x_norm)
        xk = self.wk(kv)
        xv = self.wv(kv)

        output_shape = xq.shape
        # B S D -> B S H D
        xq = xq.view(bsz, seq_len, self.n_heads, self.head_dim)
        xk = xk.view(bsz, slen_kv, self.n_kv_heads, self.head_dim)
        xv = xv.view(bsz, slen_kv, self.n_kv_heads, self.head_dim)

        xk = repeat_kv(xk, self.heads_per_group, dim=2)
        xv = repeat_kv(xv, self.heads_per_group, dim=2)

       # assert mask is None or isinstance(mask, BlockMask)
        xq, xk, xv = map(lambda e: e.transpose(1, 2), (xq, xk, xv))
        #output = flex_attention_comp(xq, xk, xv, block_mask=mask)
        is_causal = (mask == "causal") if isinstance(mask, str) else False
        mask = mask if isinstance(mask, torch.Tensor) else None
        mask = mask.to(dtype=xq.dtype).to(xq.device)
        output = F.scaled_dot_product_attention(
            xq,
            xk,
            xv,
            is_causal=is_causal,
            attn_mask=mask,
        )
        output = output.transpose(1, 2).contiguous()  # B H S D -> B S H D

        output = self.wo(output.reshape(output_shape))

        return x + output

    def init_weights(self, base_std: float, factor: float = 1.0):
        std = base_std or (self.dim ** (-0.5)) / factor

        nn.init.trunc_normal_(
            self.wq.weight,
            mean=0.0,
            std=std,
            a=-3 * std,
            b=3 * std,
        )

        nn.init.trunc_normal_(
            self.wk.weight,
            mean=0.0,
            std=std,
            a=-3 * std,
            b=3 * std,
        )

        nn.init.trunc_normal_(
            self.wv.weight,
            mean=0.0,
            std=std,
            a=-3 * std,
            b=3 * std,
        )

        nn.init.trunc_normal_(
            self.wo.weight,
            mean=0.0,
            std=std,
            a=-3 * std,
            b=3 * std,
        )
        self.cross_attn_norm_q.reset_parameters()
        self.cross_attn_norm_kv.reset_parameters()


class GlobalTransformer(nn.Module):
    def __init__(self, config):
        super().__init__()
        
        # Store config for later use
        self.config = config
        
        self.dim = config.dim
        self.init_base_std = config.init_base_std
        self.attn_impl = config.attn_impl
        self.attn_bias_type = config.attn_bias_type
        self.init_std_factor = config.init_std_factor
        self.max_seqlen = config.max_seqlen
        self.rope_embeddings = RotaryEmbedding(
            theta=config.rope_theta,
            head_dim=config.head_dim or config.dim // config.n_heads,
            max_seqlen=config.max_seqlen,
            rope_use_fp32_in_outer_product=config.rope_use_fp32_in_outer_product,
        )
        # Handle both eos_id and eos_token_id for compatibility
        self.eos_id = getattr(config, 'eos_id', getattr(config, 'eos_token_id', 2))

        # Create parameter dict for BLTTransformerLayers
        layer_params = {
            'dim': self.dim,
            'n_heads': config.n_heads,
            'head_dim': config.head_dim,
            'n_kv_heads': getattr(config, 'n_kv_heads', None),
            'rope_theta': config.rope_theta,
            'multiple_of': getattr(config, 'multiple_of', 256),
            'ffn_dim_multiplier': getattr(config, 'ffn_dim_multiplier', None),
            'norm_eps': config.norm_eps,
        }

        self.layers = nn.ModuleList()
        for _ in range(config.n_layers):
            self.layers.append(BLTTransformerLayer(layer_params))
        
        # GlobalTransformer specific attributes
        self.dropout = config.dropout
        self.dim_token_emb = config.dim_token_emb

        self.token_embedding_projection = None
        if config.dim_token_emb is not None and config.dim_token_emb != self.dim:
            self.token_embedding_projection = nn.Linear(
                config.dim_token_emb,
                config.dim,
                bias=False,
            )

    def forward(
        self,
        tokens: torch.Tensor,
        tok_idx: Optional[torch.Tensor] = None,
        embeds: Optional[torch.Tensor] = None,
        mask: Optional[Union[BlockMask, torch.Tensor, str]] = None,
        cache: Optional[List[Tuple[torch.Tensor, torch.Tensor, int]]] = None,
    ):
        bs, seqlen = tokens.shape

        h = embeds

        mask = (
            mask
            if mask is not None
            else create_causal_mask(
                seqlen,
                self.attn_impl,
                self.attn_bias_type,
                tokens=tokens,
                eos_id=self.eos_id,
            )
        )

        if self.token_embedding_projection is not None and h.shape[-1] != self.dim:
            h = self.token_embedding_projection(h)

        h = F.dropout(h, p=self.dropout, training=self.training)

        freq_cis = self.rope_embeddings(seqlen=self.max_seqlen, tok_idx=tok_idx)

        for i, layer in enumerate(self.layers):
            h = layer(h, freq_cis, tok_idx=tok_idx, mask=mask, attn_impl=self.attn_impl)
        
        return h, cache

    def init_weights(self):
        self.rope_embeddings.reset_parameters()
        for depth, layer in enumerate(self.layers):
            factor = self.config.get_init_std_factor(depth)
            layer.init_weights(self.init_base_std, factor)
        
        # GlobalTransformer specific initialization
        std = self.dim_token_emb ** (-0.5)
        if self.token_embedding_projection is not None:
            nn.init.trunc_normal_(
                self.token_embedding_projection.weight,
                mean=0.0,
                std=std,
                a=-3 * std,
                b=3 * std,
            )

def compute_hash_embeddings(
    local_encoder_tokens: torch.Tensor,
    local_encoder,
    encoder_hash_tok_embedding: nn.ModuleList,
    encoder_hash_byte_group_nb_functions: int,
    encoder_hash_byte_group_size: list,
    encoder_hash_byte_group_vocab: int,
) -> torch.Tensor:
    """
    Compute embeddings using hash token embeddings.

    Args:
        local_encoder_tokens: Input tokens tensor
        local_encoder: Encoder object with tok_embeddings method
        encoder_hash_tok_embedding: ModuleList of hash token embeddings
        encoder_hash_byte_group_nb_functions: Number of hash functions
        encoder_hash_byte_group_size: List of byte group sizes
        encoder_hash_byte_group_vocab: Vocabulary size for hash embeddings

    Returns:
        torch.Tensor: Combined embeddings
    """
    if encoder_hash_tok_embedding is None:
        return None

    local_encoder_embeds = local_encoder.tok_embeddings(local_encoder_tokens)

    i = 0
    for func_nb in range(encoder_hash_byte_group_nb_functions):
        for byte_group_size in encoder_hash_byte_group_size:
            hash_ids = byte_group_hash_function(
                local_encoder_tokens,
                byte_group_size,
                hash_func_nb=func_nb,
                max_hash=encoder_hash_byte_group_vocab,
            )
            hash_tok_embedding = encoder_hash_tok_embedding[i]
            local_encoder_embeds = local_encoder_embeds + hash_tok_embedding(hash_ids)
            i += 1

    assert i == len(encoder_hash_tok_embedding)
    return local_encoder_embeds


class BLTPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    BLT models.
    
    This class provides the interface for model loading, saving, and weight initialization for all BLT model variants.
    It inherits from [`PreTrainedModel`] which provides the core functionality for working with HuggingFace models.
    
    Args:
        config ([`BLTConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
    """

    config_class = BLTConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["BLTTransformerLayer", "LocalEncoder", "LocalDecoder", "GlobalTransformer"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_flash_attn_2 = False  # BLT uses its own attention implementation
    _supports_sdpa = True
    _supports_cache_class = False

    def _init_weights(self, module):
        """Initialize the weights - this is called by PreTrainedModel but we delegate to our custom init"""
        # Don't do anything here - we use the custom init_weights method instead
        pass


class BLTModel(BLTPreTrainedModel):
    """
    The BLTModel (BLT) is a byte-level language model architecture that processes byte sequences
    by dynamically segmenting them into patches. It uses a combination of local encoders, global transformers,
    and local decoders to efficiently encode and decode byte sequences, leveraging patch-based processing for
    improved performance and inference efficiency.
    """

    def __init__(self, config: BLTConfig):
        super().__init__(config)

        # Store config reference
        self.config = config

        # Create main components - they will read their parameters from config
        self.local_encoder = LocalEncoder(config)

        # Create global-specific config by copying config and overriding dimensions
        global_config = type(config)(**config.to_dict())
        global_config.dim = config.dim_global
        global_config.n_layers = config.n_layers_global
        global_config.n_heads = config.n_heads_global
        global_config.n_kv_heads = config.n_kv_heads_global
        global_config.dim_token_emb = config.global_dim_patch_emb

        self.global_transformer = GlobalTransformer(global_config)
        self.local_decoder = LocalDecoder(config)
        
        # Initialize hash embeddings
        self.encoder_hash_tok_embedding = init_hash_embeddings(
            config,
            local_encoder_dim=self.local_encoder.dim,
            encoder_hash_byte_group_size=config.encoder_hash_byte_group_size,
        )

        # Initialize patcher if needed
        if config.patch_in_forward:
            if config.realtime_patching and config.entropy_model_checkpoint_dir is not None:
                # Load entropy model directly
                entropy_model_checkpoint_dir = config.entropy_model_checkpoint_dir
                
                if not os.path.exists(entropy_model_checkpoint_dir):
                    raise FileNotFoundError(f"Entropy model checkpoint directory not found: {entropy_model_checkpoint_dir}")
                
                # Load entropy model parameters
                params_path = os.path.join(entropy_model_checkpoint_dir, "params.json")
                if not os.path.exists(params_path):
                    raise FileNotFoundError(f"params.json not found in: {entropy_model_checkpoint_dir}")
                
                with open(params_path) as fr:
                    reloaded = json.loads(fr.read())

                torch.set_default_dtype(torch.bfloat16)
                model_params = reloaded["entropy_model"]
                logger.warning(
                    "Update checkpoint to load attn and sliding window args from checkpoint"
                )
                
                # Override patcher configuration with actual entropy model parameters from checkpoint
                config.patcher_dim = model_params["dim"]
                config.patcher_n_layers = model_params["n_layers"]
                config.patcher_n_heads = model_params["n_heads"]
                config.patcher_max_seqlen = model_params["max_seqlen"]
                config.patcher_ffn_dim_multiplier = model_params["ffn_dim_multiplier"]
                config.patcher_vocab_size = model_params["vocab_size"]
                # Use sensible defaults for parameters not in checkpoint
                config.patcher_attn_bias_type = "local_block_causal"
                config.patcher_attn_impl = "sdpa"  # originally xformers
                config.patcher_sliding_window = 512
                
                # BLTPatcher will extract patcher_ parameters from config directly
                self.patcher = BLTPatcher(config)
                
                state_path = os.path.join(
                    entropy_model_checkpoint_dir, "consolidated.pth"
                )

                device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
                self.patcher.load_state_dict(
                    torch.load(state_path, map_location=device)["model"], strict=False
                )
                self.patcher.to(device)
                self.patcher = self.patcher.eval()
                # no grads for the model:
                for param in self.patcher.parameters():
                    param.requires_grad = False
            else:
                self.patcher = None
        
        # Initialize weights and apply final processing
        self.post_init()

    def _patch_ids_from_lengths(self, patch_lengths: torch.Tensor, seq_len: int) -> torch.Tensor:
        """
        Convert patch lengths to patch IDs for each token position.
        
        For each token position in the sequence, determines which patch it belongs to.
        
        Args:
            patch_lengths: [batch_size, num_patches] - length of each patch
            seq_len: total sequence length
            
        Returns:
            patch_ids: [batch_size, seq_len] - patch index for each token position
                      
        Example:
            patch_lengths = [[3, 2, 4, 1]]  # 4 patches of lengths 3,2,4,1
            seq_len = 10
            Returns: [[0, 0, 0, 1, 1, 2, 2, 2, 2, 3]]
                     # pos 0-2→patch 0, pos 3-4→patch 1, pos 5-8→patch 2, pos 9→patch 3
        """
        batch_size, num_patches = patch_lengths.shape
        
        # Create patch start positions: [0, 3, 5, 9] for the example above
        patch_starts = torch.cat([
            torch.zeros(batch_size, 1, dtype=patch_lengths.dtype, device=patch_lengths.device),
            patch_lengths.cumsum(dim=-1)[:, :-1]  # cumsum without the final total
        ], dim=-1)
        
        # For each token position, find which patch it belongs to
        # by finding the rightmost patch start that's <= the position
        token_positions = torch.arange(seq_len, device=patch_lengths.device)  # [0, 1, 2, ..., seq_len-1]
        
        # Broadcasting: patch_starts[batch, patch] <= token_positions[position]
        # Result: [batch, seq_len, num_patches] where result[b,t,p] = True if patch p starts <= position t
        position_ge_patch_start = patch_starts.unsqueeze(1) <= token_positions.unsqueeze(0).unsqueeze(-1)
        
        # Count how many patch starts are <= each position, then subtract 1 to get patch index
        patch_ids = position_ge_patch_start.sum(dim=-1) - 1
        
        return patch_ids

    def _decoder_patch_ids_from_lengths(self, patch_lengths: torch.Tensor, nb_boe: int, seq_len: int) -> torch.Tensor:
        """
        Create decoder patch IDs by skipping the first encoder patch.
        
        The decoder starts after the first patch (which contains BOE tokens), 
        so we need to map decoder positions to the remaining patches.
        
        Args:
            patch_lengths: [batch_size, num_patches] from encoder  
            nb_boe: number of beginning-of-example tokens in first patch
            seq_len: decoder sequence length
            
        Returns:
            decoder_patch_ids: [batch_size, seq_len] mapping decoder positions to patch indices
        """
        # Decoder uses patches 1,2,3,... (skipping patch 0 which contains BOE tokens)
        decoder_patch_lengths = patch_lengths[:, 1:]
        
        # Create patch IDs for the decoder sequence using the remaining patches
        return self._patch_ids_from_lengths(decoder_patch_lengths, seq_len)



    def forward(
        self,
        tokens: torch.Tensor,
        patch_lengths: Optional[torch.Tensor] = None,
    ):
        # NOTE: ngram_ids parameter removed since frequency-based n-gram embeddings 
        # are no longer used in the final BLT model

        bs, N = tokens.shape  # Batch size and sequence length

        # Get megabyte inputs
        nb_boe = int(0 if self.config.patching_mode != "" else self.config.patch_size - 1)
        local_encoder_tokens, _, local_decoder_tokens = get_blt_input(
            tokens=tokens,
            enforce_patch_size_multiple=False,
            nb_boe=nb_boe,
            patch_size=self.config.patch_size,
            boe_id=BOE_ID,
        )

        # Patching
        if patch_lengths is None:
            # assert (
            #     getattr(self.config, "patch_in_forward", None) is not None and self.config.patch_in_forward
            # ), "Patch in forward not enabled and no patch_lengths passed."
            
            # PATCHER MODEL DEFINED
            if self.config.patching_mode == PatchingModeEnum.entropy:
                _, patch_lengths, _ = self.patcher(
                    local_encoder_tokens,
                    patch_size=self.config.patch_size,
                    include_next_token=True,
                    threshold=self.config.patching_threshold,
                    threshold_add=self.config.patching_threshold_add,
                    monotonicity=self.config.monotonicity,
                    max_patch_length=self.config.max_patch_length,
                    patching_batch_size=self.config.patching_batch_size,
                    device=self.config.patching_device,
                )
            else:
                # self.config.patching_mode == PatchingModeEnum.byte
                bs, seq_len = local_encoder_tokens.shape
                seq_len_next_tok = seq_len + 1  # include_next_token=True
                patch_lengths = torch.ones(
                    (bs, seq_len_next_tok), dtype=local_encoder_tokens.dtype, device=local_encoder_tokens.device
                )
                
                # Apply any processing to patch lengths
                if self.config.max_patch_length is not None:
                    # TODO: avoid going back to a list here.
                    patch_lengths = [
                        BLTPatcher.split_large_numbers(pl, self.config.max_patch_length)
                        for pl in patch_lengths.tolist()
                    ]
                    max_len = max([len(pl) for pl in patch_lengths])
                    patch_lengths = [rightpad(pl, 0, max_len=max_len) for pl in patch_lengths]
                    patch_lengths = torch.tensor(
                        patch_lengths, dtype=local_encoder_tokens.dtype, device=local_encoder_tokens.device
                    )
                assert not check_non_zero_after_zero(patch_lengths)
                # Find the last non-zero column index using argmax on a reversed version of the tensor
                last_non_zero_col_reversed = (
                    (patch_lengths != 0).flip(dims=[1]).int().argmax(dim=1).min()
                )
                # Slice the tensor up to the last non-zero column
                patch_lengths = patch_lengths[
                    :, : patch_lengths.shape[1] - last_non_zero_col_reversed
                ]
        else:
            if nb_boe > 0:
                patch_lengths[:, 0] += nb_boe

        assert torch.min(patch_lengths) >= 0

        # Generate patch IDs from patch_lengths
        patch_ids = self._patch_ids_from_lengths(
            patch_lengths, local_encoder_tokens.shape[-1]
        )
        assert torch.max(patch_ids) + 1 <= torch.max(
            (patch_lengths != 0).sum(dim=-1)
        ), f"{torch.max(patch_ids) + 1} > {torch.max((patch_lengths != 0).sum(dim=-1))}"

        cross_attn_mask_enc = None
        # Cross-attention encoder
        if self.config.cross_attn_encoder:
            cross_attn_mask_enc = cross_attn_mask(
                patch_ids,
                patch_lengths,
                N,
                patches_as_queries=True,
                cross_attn_k=self.config.cross_attn_k,
                window=self.config.cross_attn_window_encoder,
                block_mask=self.config.cross_attn_use_flex_attention,
            )

        # Hashing and embedding
        local_encoder_embeds = compute_hash_embeddings(
            local_encoder_tokens=local_encoder_tokens,
            local_encoder=self.local_encoder,
            encoder_hash_tok_embedding=self.encoder_hash_tok_embedding,
            encoder_hash_byte_group_nb_functions=self.config.encoder_hash_byte_group_nb_functions,
            encoder_hash_byte_group_size=self.config.encoder_hash_byte_group_size,
            encoder_hash_byte_group_vocab=self.config.encoder_hash_byte_group_vocab,
        )

        # NOTE: Frequency-based n-gram embeddings removed as per paper
        # The final BLT model uses only hash-based n-gram embeddings

        # Local encoder
        (h_encoder, h_cross), cache_encoder = self.local_encoder(
            tokens=local_encoder_tokens,
            embeds=local_encoder_embeds,
            patch_embeds=None,
            cross_mask=cross_attn_mask_enc,
            num_patches=patch_lengths.shape[1],
            patch_ids=patch_ids,
        )

        # Downsampling
        h = h_cross.view(bs, patch_lengths.shape[1], -1)

        # Global transformer
        global_tokens = tokens.new(h.shape[0], h.shape[1]).fill_(BOE_ID)
        rows, cols = torch.where(local_encoder_tokens == self.config.eos_token_id)
        eos_patch_ids = patch_ids[rows, cols]
        global_tokens[rows, eos_patch_ids] = self.config.eos_token_id

        h, _ = self.global_transformer(
            embeds=h,
            tokens=global_tokens,
        )

        # Unpatching
        dec_embeds = h_encoder[:, nb_boe : nb_boe + N, :]

        # Generate decoder patch IDs
        decoder_patch_ids = self._decoder_patch_ids_from_lengths(
            patch_lengths, nb_boe, local_decoder_tokens.shape[-1]
        )
        assert (
            torch.max(decoder_patch_ids) + 1 <= h.shape[1]
        ), f"{torch.max(decoder_patch_ids) + 1} > {h.shape[1]}"
        assert (
            decoder_patch_ids.shape[1] == dec_embeds.shape[1]
        ), f"{decoder_patch_ids.shape[1]} != {dec_embeds.shape[1]}"

        # Cross-attention decoder
        if not self.config.cross_attn_decoder:
            h = torch.gather(
                h, 1, decoder_patch_ids.unsqueeze(-1).expand(-1, -1, h.shape[-1])
            )
            cross_attn_mask_dec = None
            assert local_decoder_tokens.shape == h.shape[:-1]
        else:
            cross_attn_mask_dec = cross_attn_mask(
                decoder_patch_ids,
                patch_lengths,
                N,
                patches_as_queries=False,
                cross_attn_k=self.config.cross_attn_k,
                window=self.config.cross_attn_window_decoder,
                block_mask=self.config.cross_attn_use_flex_attention,
            )

        # Local decoder
        output, _ = self.local_decoder(
            embeds=dec_embeds,
            patch_embeds=h,
            tokens=local_decoder_tokens,
            cross_mask=cross_attn_mask_dec,
        )
        return output

    def init_weights(self):
        self.local_encoder.init_weights()
        self.global_transformer.init_weights()
        self.local_decoder.init_weights()

        if self.encoder_hash_tok_embedding is not None:
            emb_std = self.local_encoder.dim ** (-0.5)
            for emb in self.encoder_hash_tok_embedding:
                nn.init.trunc_normal_(
                    emb.weight,
                    mean=0.0,
                    std=emb_std,
                    a=-3 * emb_std,
                    b=3 * emb_std,
                )


class BLTPatcher(BLTPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        
        # Store config reference for later use
        self.config = config
        
        # Extract patcher parameters from BLTConfig
        self.dim = config.patcher_dim
        self.init_base_std = config.patcher_init_base_std
        self.attn_impl = config.patcher_attn_impl
        self.attn_bias_type = config.patcher_attn_bias_type
        self.init_std_factor = config.patcher_init_std_factor
        self.max_seqlen = config.patcher_max_seqlen
        n_layers = config.patcher_n_layers
        n_heads = config.patcher_n_heads
        head_dim = config.patcher_head_dim
        rope_theta = config.patcher_rope_theta
        rope_use_fp32_in_outer_product = config.patcher_rope_use_fp32_in_outer_product
        norm_eps = config.patcher_norm_eps
        vocab_size = config.patcher_vocab_size
        weight_tying = config.patcher_weight_tying
        sliding_window = config.patcher_sliding_window
        eos_token_id = config.patcher_eos_token_id
        
        self.rope_embeddings = RotaryEmbedding(
            theta=rope_theta,
            head_dim=head_dim or self.dim // n_heads,
            max_seqlen=self.max_seqlen,
            rope_use_fp32_in_outer_product=rope_use_fp32_in_outer_product,
        )
        # Handle both eos_id and eos_token_id for compatibility
        self.eos_id = eos_token_id

        # Extract additional parameters for BLTTransformerLayer
        n_kv_heads = getattr(config, 'patcher_n_kv_heads', None) if hasattr(config, 'patcher_dim') else getattr(config, 'n_kv_heads', None)
        multiple_of = getattr(config, 'patcher_multiple_of', 256) if hasattr(config, 'patcher_dim') else getattr(config, 'multiple_of', 256)
        ffn_dim_multiplier = getattr(config, 'patcher_ffn_dim_multiplier', None) if hasattr(config, 'patcher_dim') else getattr(config, 'ffn_dim_multiplier', None)

        # Create a simple parameter dict for BLTTransformerLayer
        layer_params = {
            'dim': self.dim,
            'n_heads': n_heads,
            'head_dim': head_dim,
            'n_kv_heads': n_kv_heads,
            'rope_theta': rope_theta,
            'multiple_of': multiple_of,
            'ffn_dim_multiplier': ffn_dim_multiplier,
            'norm_eps': norm_eps,
        }

        self.layers = nn.ModuleList()
        for _ in range(n_layers):
            self.layers.append(BLTTransformerLayer(layer_params))
        
        # LMTransformer specific attributes
        self.weight_tying = weight_tying
        self.sliding_window = sliding_window

        assert vocab_size > 0

        self.tok_embeddings = torch.nn.Embedding(vocab_size, self.dim)

        self.norm = RMSNorm(self.dim, eps=norm_eps)

        self.output = nn.Linear(
            self.dim,
            vocab_size,
            bias=False,
        )

        if self.weight_tying:
            self.output.weight = self.tok_embeddings.weight

    def forward(
        self,
        token_values: torch.Tensor,
        target: Optional[torch.Tensor] = None,
        tok_idx: Optional[torch.Tensor] = None,
        mask: Optional[Union[BlockMask, torch.Tensor, str]] = None,
        attn_impl: str | None = None,
        patch_size: Optional[int] = None,
        include_next_token: bool = True,
        threshold: Optional[float] = None,
        threshold_add: Optional[float] = None,
        monotonicity: bool = False,
        max_patch_length: Optional[int] = None,
        patching_batch_size: int = 1,  # Changed from Optional[int] = None to int = 1
        device: Optional[str] = None,
        enable_grad: bool = False,
    ):
        attn_impl = self.attn_impl if attn_impl is None else attn_impl

        # Handle chunked processing for entropy calculation
        #   grad_context = nullcontext() if enable_grad else torch.no_grad()
        #  with grad_context:
        entropies = []
        preds = []
        max_length = min(getattr(self, "max_length", 8192), self.max_seqlen)
        batch_numel = max_length * patching_batch_size
        splits = torch.split(token_values.flatten(), batch_numel)
        
        for split in splits:
            pad_size = (max_length - (split.numel() % max_length)) % max_length
            pad = torch.zeros(
                pad_size, dtype=split.dtype, device=split.device, requires_grad=False
            )
            split = torch.cat((split, pad), dim=0)
            split = split.reshape(-1, max_length)
            if device is not None:
                split = split.to(device)
            
            # Process chunk: embeddings -> layers -> output
            bsz, seqlen = split.shape
            h = self.tok_embeddings(split)
            chunk_mask = create_causal_mask(
                seqlen,
                attn_impl,
                self.attn_bias_type,
                sliding_window=self.sliding_window,
                tokens=split,
                eos_id=self.eos_id,
            )
            freq_cis = self.rope_embeddings(seqlen=seqlen, tok_idx=None)
            
            for i, layer in enumerate(self.layers):
                h = layer(h, freq_cis, tok_idx=None, mask=chunk_mask, attn_impl=attn_impl)
            
            pred = self.output(self.norm(h))
            pred = pred.reshape(-1, pred.shape[-1])[
                : split.numel() - pad_size, :
            ]  # [batch_size * seq_len, vocab]
            preds.append(pred)
            pred_entropies = self.entropy(pred)
            entropies.append(pred_entropies)

        concat_entropies = torch.cat(entropies, dim=0)
        concat_entropies = concat_entropies.reshape(token_values.shape)
        concat_preds = torch.cat(preds, dim=0)
        concat_preds = concat_preds.reshape(token_values.shape[0], -1)
            
        # Always compute patch lengths from concatenated entropies
        bs, seq_len = token_values.shape
        seq_len_next_tok = seq_len + 1 if include_next_token else seq_len
        
        # Find patch start IDs based on entropy
        if patch_size is not None:
            patch_start_ids = self.find_entropy_patch_start_ids(
                concat_entropies,
                patch_size,
                include_next_token=include_next_token,
                threshold=threshold,
                threshold_add=threshold_add,
                monotonicity=monotonicity,
            )
            patch_lengths = self.patch_lengths_from_start_ids(
                patch_start_ids, seq_len_next_tok
            )
        else:
            # Default to byte-level patching
            patch_lengths = torch.ones(
                (bs, seq_len_next_tok), dtype=token_values.dtype, device=token_values.device
            )

        # Apply any processing to patch lengths
        if max_patch_length is not None:
            # TODO: avoid going back to a list here.
            patch_lengths = [
                self.split_large_numbers(pl, max_patch_length)
                for pl in patch_lengths.tolist()
            ]
            max_len = max([len(pl) for pl in patch_lengths])
            patch_lengths = [rightpad(pl, 0, max_len=max_len) for pl in patch_lengths]
            patch_lengths = torch.tensor(
                patch_lengths, dtype=token_values.dtype, device=token_values.device
            )
        assert not check_non_zero_after_zero(patch_lengths)
        # Find the last non-zero column index using argmax on a reversed version of the tensor
        last_non_zero_col_reversed = (
            (patch_lengths != 0).flip(dims=[1]).int().argmax(dim=1).min()
        )
        # Slice the tensor up to the last non-zero column
        patch_lengths = patch_lengths[
            :, : patch_lengths.shape[1] - last_non_zero_col_reversed
        ]
        
        return concat_entropies, patch_lengths, concat_preds

    def reset_parameters(self, init_std=None):
        self.norm.reset_parameters()

    def init_weights(self):
        self.reset_parameters()
        init_std = self.dim ** (-0.5)
        nn.init.trunc_normal_(
            self.tok_embeddings.weight,
            mean=0.0,
            std=init_std,
            a=-3 * init_std,
            b=3 * init_std,
        )
        
        self.rope_embeddings.reset_parameters()
        for depth, layer in enumerate(self.layers):
            factor = self.config.get_init_std_factor(depth)
            layer.init_weights(self.init_base_std, factor)

        if not self.weight_tying:
            nn.init.trunc_normal_(
                self.output.weight,
                mean=0.0,
                std=init_std,
                a=-3 * init_std,
                b=3 * init_std,
            )

    @staticmethod
    def entropy(scores):
        """
        scores: [bs, seq_len, vocab]
        returns [bs, seq_len]

        Computes the entropy for each token in the batch.
        Note: uses natural log.
        """
        log_probs = F.log_softmax(scores, dim=-1)
        probs = torch.exp(log_probs)
        p_log_p = log_probs * probs
        entropy = -p_log_p.sum(dim=-1)
        return entropy



    @staticmethod
    def patch_start_ids_from_patch_start_mask(patch_start_mask):
        bs, trunc_seq_len = patch_start_mask.shape
        max_patches = patch_start_mask.sum(dim=1).max()
        if max_patches == 0:
            patch_start_ids = torch.full(
                (bs, trunc_seq_len),
                trunc_seq_len,
                dtype=torch.long,
                device=patch_start_mask.device,
            )
        else:
            patch_ids = (
                torch.arange(trunc_seq_len, device=patch_start_mask.device)
                .unsqueeze(0)
                .repeat(bs, 1)
            )
            extra_patch_ids = torch.full(
                (bs, trunc_seq_len),
                trunc_seq_len,
                dtype=torch.long,
                device=patch_start_mask.device,
            )
            all_patch_ids = torch.cat((patch_ids, extra_patch_ids), dim=1)
            patch_start_mask_padded = torch.cat(
                (patch_start_mask, ~patch_start_mask), dim=1
            )
            patch_start_ids = all_patch_ids[patch_start_mask_padded].reshape(
                bs, trunc_seq_len
            )[:, :max_patches]
        return patch_start_ids

    @staticmethod
    def patch_lengths_from_start_ids(patch_start_ids, seq_len):
        """
        Calculate patch lengths from start ids.
        start ids: ex: [0, 1, 7, 7, 7, 7, 7], it has the start ids of the patches (here 0, 1), and then
            the rest are filled to the seq len.
        seq_len: ex: 7 length of the sequence

        returns the patch lengths:
        [1, 6] for the above example.
        """
        last_ids = torch.full_like(patch_start_ids[:, :1], seq_len - 1)
        patch_end_ids = torch.cat((patch_start_ids[:, 1:] - 1, last_ids), dim=1)
        patch_lengths = patch_end_ids - patch_start_ids + 1
        assert torch.all(patch_lengths >= 0), f"{patch_lengths}"
        assert not check_non_zero_after_zero(patch_lengths), f"{patch_lengths}"
        return patch_lengths

    @staticmethod
    def find_entropy_patch_start_ids(
        entropies,
        patch_size=None,
        threshold=None,
        threshold_add=None,
        monotonicity=False,
        include_next_token=True,
    ):
        """
        Use entropies to find the start ids of each patch.
        Use patch_size or threshold to figure out the total number of patches to allocate.

        When threshold is not None the number of patches is not constant between
        different sequences, but patches can be identified incrementally rather than
        decided globally using the entire sequence.
        """
        bs, seq_len = entropies.shape[:2]

        first_ids = (
            torch.tensor([0, 1], dtype=torch.long, device=entropies.device)
            .unsqueeze(0)
            .repeat(bs, 1)
        )
        preds_truncation_len = first_ids.shape[
            1
        ]  # remove the first preds because they will be start of patches.
        entropies = entropies[:, 1:]
        if threshold is None:
            num_patches = seq_len // patch_size
            patch_start_ids = entropies.topk(num_patches - 2, dim=1).indices
            patch_start_ids = patch_start_ids.sort(dim=1).values
        else:
            patch_start_mask = entropies > threshold
            if not include_next_token:
                patch_start_mask = patch_start_mask[:, :-1]
            # patch_start_mask[1:] |= tokens[:-1] < OFFSET
            patch_start_ids = BLTPatcher.patch_start_ids_from_patch_start_mask(patch_start_mask)

        patch_start_ids = torch.cat(
            (first_ids, patch_start_ids + preds_truncation_len), dim=1
        )
        return patch_start_ids

    @staticmethod
    def split_large_numbers(lst, m):
        new_lst = []
        for i in lst:
            if i > m:
                while i > m:
                    new_lst.append(m)
                    i -= m
                new_lst.append(i)
            else:
                new_lst.append(i)
        assert sum(new_lst) == sum(lst), f"{sum(new_lst)} != {sum(lst)}"
        return new_lst
    
    
def init_hash_embeddings(
    config,
    local_encoder_dim: int,
    encoder_hash_byte_group_size: list,
):
    """Initialize hash-based token embeddings for the BLT encoder."""
    if config.encoder_hash_byte_group_size is None:
        return None

    embeddings = []
    emb_dim = local_encoder_dim
    encoder_hash_byte_group_vocab = config.encoder_hash_byte_group_vocab
    
    for _ in range(config.encoder_hash_byte_group_nb_functions):
        for _ in encoder_hash_byte_group_size:
            embeddings.append(
                nn.Embedding(
                    encoder_hash_byte_group_vocab,
                    emb_dim,
                )
            )

    return nn.ModuleList(embeddings)


__all__ = [
    "BLTPreTrainedModel",
    "BLTModel",
    "BLTPatcher",
    "LocalEncoder", 
    "LocalDecoder",
    "GlobalTransformer",
]