|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_base_ = [ |
|
'../../mmdetection/configs/_base_/datasets/coco_detection.py', |
|
'../../mmdetection/configs/_base_/schedules/schedule_1x.py', |
|
'../../mmdetection/configs/_base_/default_runtime.py' |
|
] |
|
|
|
|
|
custom_imports = dict( |
|
imports=[ |
|
'legend_match_swin.custom_models.custom_dataset', |
|
'legend_match_swin.custom_models.register', |
|
'legend_match_swin.custom_models.custom_hooks', |
|
'legend_match_swin.custom_models.progressive_loss_hook', |
|
], |
|
allow_failed_imports=False |
|
) |
|
|
|
|
|
import sys |
|
import os |
|
|
|
sys.path.insert(0, os.path.join(os.getcwd(), '..', '..')) |
|
|
|
|
|
model = dict( |
|
type='CustomCascadeWithMeta', |
|
coordinate_standardization=dict( |
|
enabled=True, |
|
origin='bottom_left', |
|
normalize=True, |
|
relative_to_plot=False, |
|
scale_to_axis=False |
|
), |
|
data_preprocessor=dict( |
|
type='DetDataPreprocessor', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[58.395, 57.12, 57.375], |
|
bgr_to_rgb=True, |
|
pad_size_divisor=32), |
|
|
|
backbone=dict( |
|
type='SwinTransformer', |
|
embed_dims=128, |
|
depths=[2, 2, 18, 2], |
|
num_heads=[4, 8, 16, 32], |
|
window_size=7, |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop_rate=0.0, |
|
attn_drop_rate=0.0, |
|
drop_path_rate=0.3, |
|
patch_norm=True, |
|
out_indices=(0, 1, 2, 3), |
|
with_cp=False, |
|
convert_weights=True, |
|
init_cfg=dict( |
|
type='Pretrained', |
|
checkpoint='https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_22k_20220317-4f79f7c0.pth' |
|
) |
|
), |
|
neck=dict( |
|
type='FPN', |
|
in_channels=[128, 256, 512, 1024], |
|
out_channels=256, |
|
num_outs=6, |
|
start_level=0, |
|
add_extra_convs='on_input' |
|
), |
|
|
|
rpn_head=dict( |
|
type='RPNHead', |
|
in_channels=256, |
|
feat_channels=256, |
|
anchor_generator=dict( |
|
type='AnchorGenerator', |
|
scales=[1, 2, 4, 8], |
|
ratios=[0.5, 1.0, 2.0], |
|
strides=[4, 8, 16, 32, 64, 128]), |
|
bbox_coder=dict( |
|
type='DeltaXYWHBBoxCoder', |
|
target_means=[.0, .0, .0, .0], |
|
target_stds=[1.0, 1.0, 1.0, 1.0]), |
|
loss_cls=dict( |
|
type='CrossEntropyLoss', |
|
use_sigmoid=True, |
|
loss_weight=1.0), |
|
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), |
|
|
|
|
|
roi_head=dict( |
|
type='CascadeRoIHead', |
|
num_stages=3, |
|
stage_loss_weights=[1, 0.5, 0.25], |
|
bbox_roi_extractor=dict( |
|
type='SingleRoIExtractor', |
|
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), |
|
out_channels=256, |
|
featmap_strides=[4, 8, 16, 32]), |
|
bbox_head=[ |
|
|
|
dict( |
|
type='Shared2FCBBoxHead', |
|
in_channels=256, |
|
fc_out_channels=1024, |
|
roi_feat_size=7, |
|
num_classes=21, |
|
bbox_coder=dict( |
|
type='DeltaXYWHBBoxCoder', |
|
target_means=[0., 0., 0., 0.], |
|
target_stds=[0.05, 0.05, 0.1, 0.1]), |
|
reg_class_agnostic=True, |
|
loss_cls=dict( |
|
type='CrossEntropyLoss', |
|
use_sigmoid=False, |
|
loss_weight=1.0), |
|
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), |
|
|
|
dict( |
|
type='Shared2FCBBoxHead', |
|
in_channels=256, |
|
fc_out_channels=1024, |
|
roi_feat_size=7, |
|
num_classes=21, |
|
bbox_coder=dict( |
|
type='DeltaXYWHBBoxCoder', |
|
target_means=[0., 0., 0., 0.], |
|
target_stds=[0.033, 0.033, 0.067, 0.067]), |
|
reg_class_agnostic=True, |
|
loss_cls=dict( |
|
type='CrossEntropyLoss', |
|
use_sigmoid=False, |
|
loss_weight=1.0), |
|
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), |
|
|
|
dict( |
|
type='Shared2FCBBoxHead', |
|
in_channels=256, |
|
fc_out_channels=1024, |
|
roi_feat_size=7, |
|
num_classes=21, |
|
bbox_coder=dict( |
|
type='DeltaXYWHBBoxCoder', |
|
target_means=[0., 0., 0., 0.], |
|
target_stds=[0.02, 0.02, 0.05, 0.05]), |
|
reg_class_agnostic=True, |
|
loss_cls=dict( |
|
type='CrossEntropyLoss', |
|
use_sigmoid=False, |
|
loss_weight=1.0), |
|
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) |
|
]), |
|
train_cfg=dict( |
|
rpn=dict( |
|
assigner=dict( |
|
type='MaxIoUAssigner', |
|
pos_iou_thr=0.7, |
|
neg_iou_thr=0.3, |
|
min_pos_iou=0.3, |
|
match_low_quality=True, |
|
ignore_iof_thr=-1), |
|
sampler=dict( |
|
type='RandomSampler', |
|
num=256, |
|
pos_fraction=0.5, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=False), |
|
allowed_border=0, |
|
pos_weight=-1, |
|
debug=False), |
|
rpn_proposal=dict( |
|
nms_pre=2000, |
|
max_per_img=2000, |
|
nms=dict(type='nms', iou_threshold=0.8), |
|
min_bbox_size=0), |
|
rcnn=[ |
|
dict( |
|
assigner=dict( |
|
type='MaxIoUAssigner', |
|
pos_iou_thr=0.4, |
|
neg_iou_thr=0.4, |
|
min_pos_iou=0.4, |
|
match_low_quality=False, |
|
ignore_iof_thr=-1), |
|
sampler=dict( |
|
type='RandomSampler', |
|
num=512, |
|
pos_fraction=0.25, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=True), |
|
pos_weight=-1, |
|
debug=False), |
|
dict( |
|
assigner=dict( |
|
type='MaxIoUAssigner', |
|
pos_iou_thr=0.6, |
|
neg_iou_thr=0.6, |
|
min_pos_iou=0.6, |
|
match_low_quality=False, |
|
ignore_iof_thr=-1), |
|
sampler=dict( |
|
type='RandomSampler', |
|
num=512, |
|
pos_fraction=0.25, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=True), |
|
pos_weight=-1, |
|
debug=False), |
|
dict( |
|
assigner=dict( |
|
type='MaxIoUAssigner', |
|
pos_iou_thr=0.7, |
|
neg_iou_thr=0.7, |
|
min_pos_iou=0.7, |
|
match_low_quality=False, |
|
ignore_iof_thr=-1), |
|
sampler=dict( |
|
type='RandomSampler', |
|
num=512, |
|
pos_fraction=0.25, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=True), |
|
pos_weight=-1, |
|
debug=False) |
|
]), |
|
|
|
test_cfg=dict( |
|
rpn=dict( |
|
nms_pre=1000, |
|
max_per_img=1000, |
|
nms=dict(type='nms', iou_threshold=0.7), |
|
min_bbox_size=0), |
|
rcnn=dict( |
|
score_thr=0.005, |
|
nms=dict( |
|
type='soft_nms', |
|
iou_threshold=0.5, |
|
min_score=0.005, |
|
method='gaussian', |
|
sigma=0.5), |
|
max_per_img=500))) |
|
|
|
|
|
dataset_type = 'ChartDataset' |
|
data_root = '' |
|
|
|
|
|
CLASSES = ( |
|
'title', 'subtitle', 'x-axis', 'y-axis', 'x-axis-label', 'y-axis-label', |
|
'x-tick-label', 'y-tick-label', 'legend', 'legend-title', 'legend-item', |
|
'data-point', 'data-line', 'data-bar', 'data-area', 'grid-line', |
|
'axis-title', 'tick-label', 'data-label', 'legend-text', 'plot-area' |
|
) |
|
|
|
|
|
train_dataloader = dict( |
|
batch_size=2, |
|
num_workers=2, |
|
persistent_workers=True, |
|
sampler=dict(type='DefaultSampler', shuffle=True), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='legend_data/annotations_JSON_cleaned/train_enriched.json', |
|
data_prefix=dict(img='legend_data/train/images/'), |
|
metainfo=dict(classes=CLASSES), |
|
filter_cfg=dict(filter_empty_gt=True, min_size=0, class_specific_min_sizes={ |
|
'data-point': 16, |
|
'data-bar': 16, |
|
'tick-label': 16, |
|
'x-tick-label': 16, |
|
'y-tick-label': 16 |
|
}), |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict(type='Resize', scale=(1600, 1000), keep_ratio=True), |
|
dict(type='RandomFlip', prob=0.5), |
|
dict(type='ClampBBoxes'), |
|
dict(type='PackDetInputs') |
|
] |
|
) |
|
) |
|
|
|
val_dataloader = dict( |
|
batch_size=1, |
|
num_workers=2, |
|
persistent_workers=True, |
|
drop_last=False, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='legend_data/annotations_JSON_cleaned/val_enriched_with_info.json', |
|
data_prefix=dict(img='legend_data/train/images/'), |
|
metainfo=dict(classes=CLASSES), |
|
test_mode=True, |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='Resize', scale=(1600, 1000), keep_ratio=True), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict(type='ClampBBoxes'), |
|
dict(type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) |
|
] |
|
) |
|
) |
|
|
|
test_dataloader = val_dataloader |
|
|
|
|
|
val_evaluator = dict( |
|
type='CocoMetric', |
|
ann_file='legend_data/annotations_JSON_cleaned/val_enriched_with_info.json', |
|
metric='bbox', |
|
format_only=False, |
|
classwise=True, |
|
proposal_nums=(100, 300, 1000)) |
|
|
|
test_evaluator = val_evaluator |
|
|
|
|
|
default_hooks = dict( |
|
timer=dict(type='IterTimerHook'), |
|
logger=dict(type='LoggerHook', interval=50), |
|
param_scheduler=dict(type='ParamSchedulerHook'), |
|
checkpoint=dict(type='CompatibleCheckpointHook', interval=1, save_best='auto', max_keep_ckpts=3), |
|
sampler_seed=dict(type='DistSamplerSeedHook'), |
|
visualization=dict(type='DetVisualizationHook')) |
|
|
|
|
|
custom_hooks = [ |
|
dict(type='SkipBadSamplesHook', interval=1), |
|
dict(type='ChartTypeDistributionHook', interval=500), |
|
dict(type='MissingImageReportHook', interval=1000), |
|
dict(type='NanRecoveryHook', |
|
fallback_loss=1.0, |
|
max_consecutive_nans=100, |
|
log_interval=50), |
|
dict(type='ProgressiveLossHook', |
|
switch_epoch=5, |
|
target_loss_type='GIoULoss', |
|
loss_weight=1.0, |
|
warmup_epochs=2, |
|
monitor_stage_weights=True), |
|
] |
|
|
|
|
|
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=40, val_interval=1) |
|
val_cfg = dict(type='ValLoop') |
|
test_cfg = dict(type='TestLoop') |
|
|
|
|
|
optim_wrapper = dict( |
|
type='OptimWrapper', |
|
optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001), |
|
clip_grad=dict(max_norm=35.0, norm_type=2) |
|
) |
|
|
|
|
|
param_scheduler = [ |
|
dict( |
|
type='LinearLR', |
|
start_factor=0.05, |
|
by_epoch=False, |
|
begin=0, |
|
end=1000), |
|
dict( |
|
type='CosineAnnealingLR', |
|
begin=0, |
|
end=40, |
|
by_epoch=True, |
|
T_max=40, |
|
eta_min=1e-6, |
|
convert_to_iter_based=True) |
|
] |
|
|
|
|
|
work_dir = './work_dirs/cascade_rcnn_swin_base_40ep_cosine_fpn_meta' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
resume = False |
|
load_from = None |
|
|
|
|