--- library_name: peft license: apache-2.0 base_model: google/long-t5-tglobal-base tags: - generated_from_trainer metrics: - rouge - bleu - precision - recall - f1 model-index: - name: Lora_long_T5_sum_outcome results: [] --- # Lora_long_T5_sum_outcome This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1051 - Rouge1: 0.3789 - Rouge2: 0.1817 - Rougel: 0.3238 - Rougelsum: 0.3256 - Gen Len: 27.8 - Bleu: 0.0865 - Precisions: 0.1534 - Brevity Penalty: 0.8221 - Length Ratio: 0.8362 - Translation Length: 980.0 - Reference Length: 1172.0 - Precision: 0.8937 - Recall: 0.8862 - F1: 0.8898 - Hashcode: roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Precision | Recall | F1 | Hashcode | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:|:----------:|:---------------:|:------------:|:------------------:|:----------------:|:---------:|:------:|:------:|:---------------------------------------------------------:| | 22.0917 | 1.0 | 7 | 5.3855 | 0.0468 | 0.0056 | 0.0416 | 0.0415 | 31.0 | 0.0 | 0.016 | 0.5803 | 0.6476 | 759.0 | 1172.0 | 0.7506 | 0.8197 | 0.7828 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 6.5733 | 2.0 | 14 | 4.6730 | 0.1909 | 0.0287 | 0.1473 | 0.1475 | 30.88 | 0.0179 | 0.0488 | 0.8856 | 0.8916 | 1045.0 | 1172.0 | 0.8418 | 0.8462 | 0.844 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 4.2163 | 3.0 | 21 | 3.6942 | 0.2295 | 0.0424 | 0.1634 | 0.1642 | 29.08 | 0.0264 | 0.0695 | 0.8469 | 0.8575 | 1005.0 | 1172.0 | 0.8546 | 0.8582 | 0.8563 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 3.5683 | 4.0 | 28 | 3.1688 | 0.2805 | 0.0846 | 0.2121 | 0.2134 | 28.98 | 0.0383 | 0.0906 | 0.8469 | 0.8575 | 1005.0 | 1172.0 | 0.8681 | 0.8666 | 0.8672 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 3.2672 | 5.0 | 35 | 2.8633 | 0.325 | 0.1351 | 0.2652 | 0.2669 | 28.4 | 0.0652 | 0.1242 | 0.8341 | 0.8464 | 992.0 | 1172.0 | 0.8823 | 0.8776 | 0.8799 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 3.0146 | 6.0 | 42 | 2.4207 | 0.3326 | 0.1431 | 0.2839 | 0.2856 | 28.08 | 0.0788 | 0.1344 | 0.839 | 0.8507 | 997.0 | 1172.0 | 0.8839 | 0.879 | 0.8813 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 2.4539 | 7.0 | 49 | 1.7916 | 0.3471 | 0.1565 | 0.2932 | 0.2931 | 28.26 | 0.0882 | 0.1431 | 0.839 | 0.8507 | 997.0 | 1172.0 | 0.8863 | 0.882 | 0.884 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 1.965 | 8.0 | 56 | 1.3215 | 0.3607 | 0.1749 | 0.3113 | 0.3125 | 28.18 | 0.0925 | 0.1498 | 0.8331 | 0.8456 | 991.0 | 1172.0 | 0.889 | 0.8839 | 0.8863 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 1.7658 | 9.0 | 63 | 1.1630 | 0.3772 | 0.1782 | 0.3211 | 0.3228 | 27.8 | 0.0838 | 0.1518 | 0.813 | 0.8285 | 971.0 | 1172.0 | 0.8937 | 0.8859 | 0.8897 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 1.5019 | 10.0 | 70 | 1.1051 | 0.3789 | 0.1817 | 0.3238 | 0.3256 | 27.8 | 0.0865 | 0.1534 | 0.8221 | 0.8362 | 980.0 | 1172.0 | 0.8937 | 0.8862 | 0.8898 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | ### Framework versions - PEFT 0.15.2 - Transformers 4.53.1 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1