--- library_name: transformers license: apache-2.0 datasets: - HuggingFaceM4/the_cauldron - HuggingFaceM4/Docmatix - lmms-lab/LLaVA-OneVision-Data - lmms-lab/M4-Instruct-Data - HuggingFaceFV/finevideo - MAmmoTH-VL/MAmmoTH-VL-Instruct-12M - lmms-lab/LLaVA-Video-178K - orrzohar/Video-STaR - Mutonix/Vript - TIGER-Lab/VISTA-400K - Enxin/MovieChat-1K_train - ShareGPT4Video/ShareGPT4Video pipeline_tag: image-text-to-text language: - en base_model: HuggingFaceTB/SmolVLM2-500M-Video-Instruct tags: - openvino - nncf - 8-bit --- This model is a quantized version of [`HuggingFaceTB/SmolVLM2-500M-Video-Instruct`](https://huggingface.co/HuggingFaceTB/SmolVLM2-500M-Video-Instruct) and is converted to the OpenVINO format. This model was obtained via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space with [optimum-intel](https://github.com/huggingface/optimum-intel). First make sure you have `optimum-intel` installed: ```bash pip install optimum[openvino] ``` To load your model you can do as follows: ```python from optimum.intel import OVModelForVisualCausalLM model_id = "echarlaix/SmolVLM2-500M-Video-Instruct-openvino-8bit-static" model = OVModelForVisualCausalLM.from_pretrained(model_id) ```