Upload openvino_text_embeddings_model.xml with huggingface_hub
Browse files
openvino_text_embeddings_model.xml
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="Model199" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="input" type="Parameter" version="opset1">
|
5 |
+
<data shape="?,?" element_type="i64" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="I64" names="input">
|
8 |
+
<dim>-1</dim>
|
9 |
+
<dim>-1</dim>
|
10 |
+
</port>
|
11 |
+
</output>
|
12 |
+
</layer>
|
13 |
+
<layer id="1" name="self.weight" type="Const" version="opset1">
|
14 |
+
<data element_type="u8" shape="49280, 960" offset="0" size="47308800" />
|
15 |
+
<output>
|
16 |
+
<port id="0" precision="U8">
|
17 |
+
<dim>49280</dim>
|
18 |
+
<dim>960</dim>
|
19 |
+
</port>
|
20 |
+
</output>
|
21 |
+
</layer>
|
22 |
+
<layer id="2" name="Convert_834939" type="Convert" version="opset1">
|
23 |
+
<data destination_type="f16" />
|
24 |
+
<input>
|
25 |
+
<port id="0" precision="U8">
|
26 |
+
<dim>49280</dim>
|
27 |
+
<dim>960</dim>
|
28 |
+
</port>
|
29 |
+
</input>
|
30 |
+
<output>
|
31 |
+
<port id="1" precision="FP16">
|
32 |
+
<dim>49280</dim>
|
33 |
+
<dim>960</dim>
|
34 |
+
</port>
|
35 |
+
</output>
|
36 |
+
</layer>
|
37 |
+
<layer id="3" name="self.weight/zero_point" type="Const" version="opset1">
|
38 |
+
<data element_type="u8" shape="49280, 1" offset="47308800" size="49280" />
|
39 |
+
<output>
|
40 |
+
<port id="0" precision="U8">
|
41 |
+
<dim>49280</dim>
|
42 |
+
<dim>1</dim>
|
43 |
+
</port>
|
44 |
+
</output>
|
45 |
+
</layer>
|
46 |
+
<layer id="4" name="Convert_834942" type="Convert" version="opset1">
|
47 |
+
<data destination_type="f16" />
|
48 |
+
<input>
|
49 |
+
<port id="0" precision="U8">
|
50 |
+
<dim>49280</dim>
|
51 |
+
<dim>1</dim>
|
52 |
+
</port>
|
53 |
+
</input>
|
54 |
+
<output>
|
55 |
+
<port id="1" precision="FP16">
|
56 |
+
<dim>49280</dim>
|
57 |
+
<dim>1</dim>
|
58 |
+
</port>
|
59 |
+
</output>
|
60 |
+
</layer>
|
61 |
+
<layer id="5" name="self.weight/zero_point/subtract" type="Subtract" version="opset1">
|
62 |
+
<data auto_broadcast="numpy" />
|
63 |
+
<input>
|
64 |
+
<port id="0" precision="FP16">
|
65 |
+
<dim>49280</dim>
|
66 |
+
<dim>960</dim>
|
67 |
+
</port>
|
68 |
+
<port id="1" precision="FP16">
|
69 |
+
<dim>49280</dim>
|
70 |
+
<dim>1</dim>
|
71 |
+
</port>
|
72 |
+
</input>
|
73 |
+
<output>
|
74 |
+
<port id="2" precision="FP16">
|
75 |
+
<dim>49280</dim>
|
76 |
+
<dim>960</dim>
|
77 |
+
</port>
|
78 |
+
</output>
|
79 |
+
</layer>
|
80 |
+
<layer id="6" name="self.weight/scale" type="Const" version="opset1">
|
81 |
+
<data element_type="f16" shape="49280, 1" offset="47358080" size="98560" />
|
82 |
+
<output>
|
83 |
+
<port id="0" precision="FP16">
|
84 |
+
<dim>49280</dim>
|
85 |
+
<dim>1</dim>
|
86 |
+
</port>
|
87 |
+
</output>
|
88 |
+
</layer>
|
89 |
+
<layer id="7" name="self.weight/fq_weights_0" type="Multiply" version="opset1">
|
90 |
+
<data auto_broadcast="numpy" />
|
91 |
+
<input>
|
92 |
+
<port id="0" precision="FP16">
|
93 |
+
<dim>49280</dim>
|
94 |
+
<dim>960</dim>
|
95 |
+
</port>
|
96 |
+
<port id="1" precision="FP16">
|
97 |
+
<dim>49280</dim>
|
98 |
+
<dim>1</dim>
|
99 |
+
</port>
|
100 |
+
</input>
|
101 |
+
<output>
|
102 |
+
<port id="2" precision="FP16">
|
103 |
+
<dim>49280</dim>
|
104 |
+
<dim>960</dim>
|
105 |
+
</port>
|
106 |
+
</output>
|
107 |
+
</layer>
|
108 |
+
<layer id="8" name="self.weight/fq_weights_0/convert" type="Convert" version="opset1">
|
109 |
+
<data destination_type="f32" />
|
110 |
+
<input>
|
111 |
+
<port id="0" precision="FP16">
|
112 |
+
<dim>49280</dim>
|
113 |
+
<dim>960</dim>
|
114 |
+
</port>
|
115 |
+
</input>
|
116 |
+
<output>
|
117 |
+
<port id="1" precision="FP32">
|
118 |
+
<dim>49280</dim>
|
119 |
+
<dim>960</dim>
|
120 |
+
</port>
|
121 |
+
</output>
|
122 |
+
</layer>
|
123 |
+
<layer id="9" name="aten::embedding/Convert" type="Convert" version="opset1">
|
124 |
+
<data destination_type="i32" />
|
125 |
+
<input>
|
126 |
+
<port id="0" precision="I64">
|
127 |
+
<dim>-1</dim>
|
128 |
+
<dim>-1</dim>
|
129 |
+
</port>
|
130 |
+
</input>
|
131 |
+
<output>
|
132 |
+
<port id="1" precision="I32">
|
133 |
+
<dim>-1</dim>
|
134 |
+
<dim>-1</dim>
|
135 |
+
</port>
|
136 |
+
</output>
|
137 |
+
</layer>
|
138 |
+
<layer id="10" name="aten::embedding/Constant" type="Const" version="opset1">
|
139 |
+
<data element_type="i32" shape="" offset="47456640" size="4" />
|
140 |
+
<output>
|
141 |
+
<port id="0" precision="I32" />
|
142 |
+
</output>
|
143 |
+
</layer>
|
144 |
+
<layer id="11" name="aten::embedding/Gather" type="Gather" version="opset8">
|
145 |
+
<data batch_dims="0" />
|
146 |
+
<input>
|
147 |
+
<port id="0" precision="FP32">
|
148 |
+
<dim>49280</dim>
|
149 |
+
<dim>960</dim>
|
150 |
+
</port>
|
151 |
+
<port id="1" precision="I32">
|
152 |
+
<dim>-1</dim>
|
153 |
+
<dim>-1</dim>
|
154 |
+
</port>
|
155 |
+
<port id="2" precision="I32" />
|
156 |
+
</input>
|
157 |
+
<output>
|
158 |
+
<port id="3" precision="FP32" names="inputs_embeds">
|
159 |
+
<dim>-1</dim>
|
160 |
+
<dim>-1</dim>
|
161 |
+
<dim>960</dim>
|
162 |
+
</port>
|
163 |
+
</output>
|
164 |
+
</layer>
|
165 |
+
<layer id="12" name="Result_526194" type="Result" version="opset1" output_names="inputs_embeds">
|
166 |
+
<input>
|
167 |
+
<port id="0" precision="FP32">
|
168 |
+
<dim>-1</dim>
|
169 |
+
<dim>-1</dim>
|
170 |
+
<dim>960</dim>
|
171 |
+
</port>
|
172 |
+
</input>
|
173 |
+
</layer>
|
174 |
+
</layers>
|
175 |
+
<edges>
|
176 |
+
<edge from-layer="0" from-port="0" to-layer="9" to-port="0" />
|
177 |
+
<edge from-layer="1" from-port="0" to-layer="2" to-port="0" />
|
178 |
+
<edge from-layer="2" from-port="1" to-layer="5" to-port="0" />
|
179 |
+
<edge from-layer="3" from-port="0" to-layer="4" to-port="0" />
|
180 |
+
<edge from-layer="4" from-port="1" to-layer="5" to-port="1" />
|
181 |
+
<edge from-layer="5" from-port="2" to-layer="7" to-port="0" />
|
182 |
+
<edge from-layer="6" from-port="0" to-layer="7" to-port="1" />
|
183 |
+
<edge from-layer="7" from-port="2" to-layer="8" to-port="0" />
|
184 |
+
<edge from-layer="8" from-port="1" to-layer="11" to-port="0" />
|
185 |
+
<edge from-layer="9" from-port="1" to-layer="11" to-port="1" />
|
186 |
+
<edge from-layer="10" from-port="0" to-layer="11" to-port="2" />
|
187 |
+
<edge from-layer="11" from-port="3" to-layer="12" to-port="0" />
|
188 |
+
</edges>
|
189 |
+
<rt_info>
|
190 |
+
<Runtime_version value="2025.2.0-19140-c01cd93e24d-releases/2025/2" />
|
191 |
+
<conversion_parameters>
|
192 |
+
<framework value="pytorch" />
|
193 |
+
<is_python_object value="True" />
|
194 |
+
</conversion_parameters>
|
195 |
+
<nncf>
|
196 |
+
<friendly_names_were_updated value="True" />
|
197 |
+
<version value="2.17.0" />
|
198 |
+
<weight_compression>
|
199 |
+
<advanced_parameters value="{'statistics_path': None, 'awq_params': {'subset_size': 32, 'percent_to_apply': 0.002, 'alpha_min': 0.0, 'alpha_max': 1.0, 'steps': 100, 'prefer_data_aware_scaling': True}, 'scale_estimation_params': {'subset_size': 64, 'initial_steps': 5, 'scale_steps': 5, 'weight_penalty': -1.0}, 'gptq_params': {'damp_percent': 0.1, 'block_size': 128, 'subset_size': 128}, 'lora_correction_params': {'adapter_rank': 8, 'num_iterations': 3, 'apply_regularization': True, 'subset_size': 128, 'use_int8_adapters': True}, 'lora_adapter_rank': 256, 'backend_params': {}}" />
|
200 |
+
<all_layers value="False" />
|
201 |
+
<awq value="False" />
|
202 |
+
<backup_mode value="int8_asym" />
|
203 |
+
<compression_format value="dequantize" />
|
204 |
+
<gptq value="False" />
|
205 |
+
<group_size value="-1" />
|
206 |
+
<ignored_scope value="[]" />
|
207 |
+
<lora_correction value="False" />
|
208 |
+
<mode value="int8_asym" />
|
209 |
+
<ratio value="1.0" />
|
210 |
+
<scale_estimation value="False" />
|
211 |
+
<sensitivity_metric value="weight_quantization_error" />
|
212 |
+
</weight_compression>
|
213 |
+
</nncf>
|
214 |
+
<optimum>
|
215 |
+
<nncf_version value="2.17.0" />
|
216 |
+
<optimum_intel_version value="1.24.0" />
|
217 |
+
<optimum_version value="1.26.1" />
|
218 |
+
<pytorch_version value="2.7.1" />
|
219 |
+
<transformers_version value="4.52.4" />
|
220 |
+
</optimum>
|
221 |
+
</rt_info>
|
222 |
+
</net>
|