dengcao commited on
Commit
999d5dc
·
verified ·
1 Parent(s): b29e087

Upload 3 files

Browse files
Files changed (3) hide show
  1. .gitattributes +47 -40
  2. README.md +327 -0
  3. configuration.json +1 -0
.gitattributes CHANGED
@@ -1,40 +1,47 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
36
- Qwen3-Embedding-0.6B-bf16.gguf filter=lfs diff=lfs merge=lfs -text
37
- Qwen3-Embedding-0.6B-f16.gguf filter=lfs diff=lfs merge=lfs -text
38
- Qwen3-Embedding-0.6B-q4_k_m.gguf filter=lfs diff=lfs merge=lfs -text
39
- Qwen3-Embedding-0.6B-q5_k_m.gguf filter=lfs diff=lfs merge=lfs -text
40
- Qwen3-Embedding-0.6B-q8_0.gguf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *.tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.db* filter=lfs diff=lfs merge=lfs -text
29
+ *.ark* filter=lfs diff=lfs merge=lfs -text
30
+ **/*ckpt*data* filter=lfs diff=lfs merge=lfs -text
31
+ **/*ckpt*.meta filter=lfs diff=lfs merge=lfs -text
32
+ **/*ckpt*.index filter=lfs diff=lfs merge=lfs -text
33
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
34
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
35
+ *.gguf* filter=lfs diff=lfs merge=lfs -text
36
+ *.ggml filter=lfs diff=lfs merge=lfs -text
37
+ *.llamafile* filter=lfs diff=lfs merge=lfs -text
38
+ *.pt2 filter=lfs diff=lfs merge=lfs -text
39
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
40
+ *.npy filter=lfs diff=lfs merge=lfs -text
41
+ *.npz filter=lfs diff=lfs merge=lfs -text
42
+ *.pickle filter=lfs diff=lfs merge=lfs -text
43
+ *.pkl filter=lfs diff=lfs merge=lfs -text
44
+ *.tar filter=lfs diff=lfs merge=lfs -text
45
+ *.wasm filter=lfs diff=lfs merge=lfs -text
46
+ *.zst filter=lfs diff=lfs merge=lfs -text
47
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,330 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ base_model:
4
+ - Qwen/Qwen3-0.6B-Base
5
+ tags:
6
+ - transformers
7
+ - sentence-transformers
8
+ - sentence-similarity
9
+ - feature-extraction
10
  ---
11
+
12
+ # <span style="color: #7FFF7F;">Qwen3-Embedding-0.6B GGUF Models</span>
13
+
14
+
15
+ ## <span style="color: #7F7FFF;">Model Generation Details</span>
16
+
17
+ This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`1f63e75f`](https://github.com/ggerganov/llama.cpp/commit/1f63e75f3b5dc7f44dbe63c8a41d23958fe95bc0).
18
+
19
+
20
+ # Qwen3-Embedding-0.6B
21
+
22
+ <p align="center">
23
+ <img src="https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/logo_qwen3.png" width="400"/>
24
+ <p>
25
+
26
+ ## Highlights
27
+
28
+ The Qwen3 Embedding model series is the latest proprietary model of the Qwen family, specifically designed for text embedding and ranking tasks. Building upon the dense foundational models of the Qwen3 series, it provides a comprehensive range of text embeddings and reranking models in various sizes (0.6B, 4B, and 8B). This series inherits the exceptional multilingual capabilities, long-text understanding, and reasoning skills of its foundational model. The Qwen3 Embedding series represents significant advancements in multiple text embedding and ranking tasks, including text retrieval, code retrieval, text classification, text clustering, and bitext mining.
29
+
30
+ **Exceptional Versatility**: The embedding model has achieved state-of-the-art performance across a wide range of downstream application evaluations. The 8B size embedding model ranks **No.1** in the MTEB multilingual leaderboard (as of June 5, 2025, score **70.58**), while the reranking model excels in various text retrieval scenarios.
31
+
32
+ **Comprehensive Flexibility**: The Qwen3 Embedding series offers a full spectrum of sizes (from 0.6B to 8B) for both embedding and reranking models, catering to diverse use cases that prioritize efficiency and effectiveness. Developers can seamlessly combine these two modules. Additionally, the embedding model allows for flexible vector definitions across all dimensions, and both embedding and reranking models support user-defined instructions to enhance performance for specific tasks, languages, or scenarios.
33
+
34
+ **Multilingual Capability**: The Qwen3 Embedding series offer support for over 100 languages, thanks to the multilingual capabilites of Qwen3 models. This includes various programming languages, and provides robust multilingual, cross-lingual, and code retrieval capabilities.
35
+ ## Model Overview
36
+
37
+ **Qwen3-Embedding-0.6B** has the following features:
38
+
39
+ - Model Type: Text Embedding
40
+ - Supported Languages: 100+ Languages
41
+ - Number of Paramaters: 0.6B
42
+ - Context Length: 32k
43
+ - Embedding Dimension: Up to 1024, supports user-defined output dimensions ranging from 32 to 1024
44
+
45
+ For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3-embedding/), [GitHub](https://github.com/QwenLM/Qwen3-Embedding).
46
+
47
+ ## Qwen3 Embedding Series Model list
48
+
49
+ | Model Type | Models | Size | Layers | Sequence Length | Embedding Dimension | MRL Support | Instruction Aware |
50
+ |------------------|----------------------|------|--------|-----------------|---------------------|-------------|----------------|
51
+ | Text Embedding | [Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) | 0.6B | 28 | 32K | 1024 | Yes | Yes |
52
+ | Text Embedding | [Qwen3-Embedding-4B](https://huggingface.co/Qwen/Qwen3-Embedding-4B) | 4B | 36 | 32K | 2560 | Yes | Yes |
53
+ | Text Embedding | [Qwen3-Embedding-8B](https://huggingface.co/Qwen/Qwen3-Embedding-8B) | 8B | 36 | 32K | 4096 | Yes | Yes |
54
+ | Text Reranking | [Qwen3-Reranker-0.6B](https://huggingface.co/Qwen/Qwen3-Reranker-0.6B) | 0.6B | 28 | 32K | - | - | Yes |
55
+ | Text Reranking | [Qwen3-Reranker-4B](https://huggingface.co/Qwen/Qwen3-Reranker-4B) | 4B | 36 | 32K | - | - | Yes |
56
+ | Text Reranking | [Qwen3-Reranker-8B](https://huggingface.co/Qwen/Qwen3-Reranker-8B) | 8B | 36 | 32K | - | - | Yes |
57
+
58
+ > **Note**:
59
+ > - `MRL Support` indicates whether the embedding model supports custom dimensions for the final embedding.
60
+ > - `Instruction Aware` notes whether the embedding or reranking model supports customizing the input instruction according to different tasks.
61
+ > - Our evaluation indicates that, for most downstream tasks, using instructions (instruct) typically yields an improvement of 1% to 5% compared to not using them. Therefore, we recommend that developers create tailored instructions specific to their tasks and scenarios. In multilingual contexts, we also advise users to write their instructions in English, as most instructions utilized during the model training process were originally written in English.
62
+
63
+ ## Usage
64
+
65
+ With Transformers versions earlier than 4.51.0, you may encounter the following error:
66
+ ```
67
+ KeyError: 'qwen3'
68
+ ```
69
+
70
+ ### Sentence Transformers Usage
71
+
72
+ ```python
73
+ # Requires transformers>=4.51.0
74
+ # Requires sentence-transformers>=2.7.0
75
+
76
+ from sentence_transformers import SentenceTransformer
77
+
78
+ # Load the model
79
+ model = SentenceTransformer("Qwen/Qwen3-Embedding-0.6B")
80
+
81
+ # We recommend enabling flash_attention_2 for better acceleration and memory saving,
82
+ # together with setting `padding_side` to "left":
83
+ # model = SentenceTransformer(
84
+ # "Qwen/Qwen3-Embedding-0.6B",
85
+ # model_kwargs={"attn_implementation": "flash_attention_2", "device_map": "auto"},
86
+ # tokenizer_kwargs={"padding_side": "left"},
87
+ # )
88
+
89
+ # The queries and documents to embed
90
+ queries = [
91
+ "What is the capital of China?",
92
+ "Explain gravity",
93
+ ]
94
+ documents = [
95
+ "The capital of China is Beijing.",
96
+ "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
97
+ ]
98
+
99
+ # Encode the queries and documents. Note that queries benefit from using a prompt
100
+ # Here we use the prompt called "query" stored under `model.prompts`, but you can
101
+ # also pass your own prompt via the `prompt` argument
102
+ query_embeddings = model.encode(queries, prompt_name="query")
103
+ document_embeddings = model.encode(documents)
104
+
105
+ # Compute the (cosine) similarity between the query and document embeddings
106
+ similarity = model.similarity(query_embeddings, document_embeddings)
107
+ print(similarity)
108
+ # tensor([[0.7646, 0.1414],
109
+ # [0.1355, 0.6000]])
110
+ ```
111
+
112
+ ### Transformers Usage
113
+
114
+ ```python
115
+ # Requires transformers>=4.51.0
116
+
117
+ import torch
118
+ import torch.nn.functional as F
119
+
120
+ from torch import Tensor
121
+ from transformers import AutoTokenizer, AutoModel
122
+
123
+
124
+ def last_token_pool(last_hidden_states: Tensor,
125
+ attention_mask: Tensor) -> Tensor:
126
+ left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
127
+ if left_padding:
128
+ return last_hidden_states[:, -1]
129
+ else:
130
+ sequence_lengths = attention_mask.sum(dim=1) - 1
131
+ batch_size = last_hidden_states.shape[0]
132
+ return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
133
+
134
+
135
+ def get_detailed_instruct(task_description: str, query: str) -> str:
136
+ return f'Instruct: {task_description}\nQuery:{query}'
137
+
138
+ # Each query must come with a one-sentence instruction that describes the task
139
+ task = 'Given a web search query, retrieve relevant passages that answer the query'
140
+
141
+ queries = [
142
+ get_detailed_instruct(task, 'What is the capital of China?'),
143
+ get_detailed_instruct(task, 'Explain gravity')
144
+ ]
145
+ # No need to add instruction for retrieval documents
146
+ documents = [
147
+ "The capital of China is Beijing.",
148
+ "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun."
149
+ ]
150
+ input_texts = queries + documents
151
+
152
+ tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen3-Embedding-0.6B', padding_side='left')
153
+ model = AutoModel.from_pretrained('Qwen/Qwen3-Embedding-0.6B')
154
+
155
+ # We recommend enabling flash_attention_2 for better acceleration and memory saving.
156
+ # model = AutoModel.from_pretrained('Qwen/Qwen3-Embedding-0.6B', attn_implementation="flash_attention_2", torch_dtype=torch.float16).cuda()
157
+
158
+ max_length = 8192
159
+
160
+ # Tokenize the input texts
161
+ batch_dict = tokenizer(
162
+ input_texts,
163
+ padding=True,
164
+ truncation=True,
165
+ max_length=max_length,
166
+ return_tensors="pt",
167
+ )
168
+ batch_dict.to(model.device)
169
+ outputs = model(**batch_dict)
170
+ embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
171
+
172
+ # normalize embeddings
173
+ embeddings = F.normalize(embeddings, p=2, dim=1)
174
+ scores = (embeddings[:2] @ embeddings[2:].T)
175
+ print(scores.tolist())
176
+ # [[0.7645568251609802, 0.14142508804798126], [0.13549736142158508, 0.5999549627304077]]
177
+ ```
178
+
179
+ ### vLLM Usage
180
+
181
+ ```python
182
+ # Requires vllm>=0.8.5
183
+ import torch
184
+ import vllm
185
+ from vllm import LLM
186
+
187
+ def get_detailed_instruct(task_description: str, query: str) -> str:
188
+ return f'Instruct: {task_description}\nQuery:{query}'
189
+
190
+ # Each query must come with a one-sentence instruction that describes the task
191
+ task = 'Given a web search query, retrieve relevant passages that answer the query'
192
+
193
+ queries = [
194
+ get_detailed_instruct(task, 'What is the capital of China?'),
195
+ get_detailed_instruct(task, 'Explain gravity')
196
+ ]
197
+ # No need to add instruction for retrieval documents
198
+ documents = [
199
+ "The capital of China is Beijing.",
200
+ "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun."
201
+ ]
202
+ input_texts = queries + documents
203
+
204
+ model = LLM(model="Qwen/Qwen3-Embedding-0.6B", task="embed")
205
+
206
+ outputs = model.embed(input_texts)
207
+ embeddings = torch.tensor([o.outputs.embedding for o in outputs])
208
+ scores = (embeddings[:2] @ embeddings[2:].T)
209
+ print(scores.tolist())
210
+ # [[0.7620252966880798, 0.14078938961029053], [0.1358368694782257, 0.6013815999031067]]
211
+ ```
212
+
213
+ 📌 **Tip**: We recommend that developers customize the `instruct` according to their specific scenarios, tasks, and languages. Our tests have shown that in most retrieval scenarios, not using an `instruct` on the query side can lead to a drop in retrieval performance by approximately 1% to 5%.
214
+
215
+ ## Evaluation
216
+
217
+ ### MTEB (Multilingual)
218
+
219
+ | Model | Size | Mean (Task) | Mean (Type) | Bitxt Mining | Class. | Clust. | Inst. Retri. | Multi. Class. | Pair. Class. | Rerank | Retri. | STS |
220
+ |----------------------------------|:-------:|:-------------:|:-------------:|:--------------:|:--------:|:--------:|:--------------:|:---------------:|:--------------:|:--------:|:--------:|:------:|
221
+ | NV-Embed-v2 | 7B | 56.29 | 49.58 | 57.84 | 57.29 | 40.80 | 1.04 | 18.63 | 78.94 | 63.82 | 56.72 | 71.10|
222
+ | GritLM-7B | 7B | 60.92 | 53.74 | 70.53 | 61.83 | 49.75 | 3.45 | 22.77 | 79.94 | 63.78 | 58.31 | 73.33|
223
+ | BGE-M3 | 0.6B | 59.56 | 52.18 | 79.11 | 60.35 | 40.88 | -3.11 | 20.1 | 80.76 | 62.79 | 54.60 | 74.12|
224
+ | multilingual-e5-large-instruct | 0.6B | 63.22 | 55.08 | 80.13 | 64.94 | 50.75 | -0.40 | 22.91 | 80.86 | 62.61 | 57.12 | 76.81|
225
+ | gte-Qwen2-1.5B-instruct | 1.5B | 59.45 | 52.69 | 62.51 | 58.32 | 52.05 | 0.74 | 24.02 | 81.58 | 62.58 | 60.78 | 71.61|
226
+ | gte-Qwen2-7b-Instruct | 7B | 62.51 | 55.93 | 73.92 | 61.55 | 52.77 | 4.94 | 25.48 | 85.13 | 65.55 | 60.08 | 73.98|
227
+ | text-embedding-3-large | - | 58.93 | 51.41 | 62.17 | 60.27 | 46.89 | -2.68 | 22.03 | 79.17 | 63.89 | 59.27 | 71.68|
228
+ | Cohere-embed-multilingual-v3.0 | - | 61.12 | 53.23 | 70.50 | 62.95 | 46.89 | -1.89 | 22.74 | 79.88 | 64.07 | 59.16 | 74.80|
229
+ | Gemini Embedding | - | 68.37 | 59.59 | 79.28 | 71.82 | 54.59 | 5.18 | **29.16** | 83.63 | 65.58 | 67.71 | 79.40|
230
+ | **Qwen3-Embedding-0.6B** | 0.6B | 64.33 | 56.00 | 72.22 | 66.83 | 52.33 | 5.09 | 24.59 | 80.83 | 61.41 | 64.64 | 76.17|
231
+ | **Qwen3-Embedding-4B** | 4B | 69.45 | 60.86 | 79.36 | 72.33 | 57.15 | **11.56** | 26.77 | 85.05 | 65.08 | 69.60 | 80.86|
232
+ | **Qwen3-Embedding-8B** | 8B | **70.58** | **61.69** | **80.89** | **74.00** | **57.65** | 10.06 | 28.66 | **86.40** | **65.63** | **70.88** | **81.08** |
233
+
234
+ > **Note**: For compared models, the scores are retrieved from MTEB online [leaderboard](https://huggingface.co/spaces/mteb/leaderboard) on May 24th, 2025.
235
+
236
+ ### MTEB (Eng v2)
237
+
238
+ | MTEB English / Models | Param. | Mean(Task) | Mean(Type) | Class. | Clust. | Pair Class. | Rerank. | Retri. | STS | Summ. |
239
+ |--------------------------------|:--------:|:------------:|:------------:|:--------:|:--------:|:-------------:|:---------:|:--------:|:-------:|:-------:|
240
+ | multilingual-e5-large-instruct | 0.6B | 65.53 | 61.21 | 75.54 | 49.89 | 86.24 | 48.74 | 53.47 | 84.72 | 29.89 |
241
+ | NV-Embed-v2 | 7.8B | 69.81 | 65.00 | 87.19 | 47.66 | 88.69 | 49.61 | 62.84 | 83.82 | 35.21 |
242
+ | GritLM-7B | 7.2B | 67.07 | 63.22 | 81.25 | 50.82 | 87.29 | 49.59 | 54.95 | 83.03 | 35.65 |
243
+ | gte-Qwen2-1.5B-instruct | 1.5B | 67.20 | 63.26 | 85.84 | 53.54 | 87.52 | 49.25 | 50.25 | 82.51 | 33.94 |
244
+ | stella_en_1.5B_v5 | 1.5B | 69.43 | 65.32 | 89.38 | 57.06 | 88.02 | 50.19 | 52.42 | 83.27 | 36.91 |
245
+ | gte-Qwen2-7B-instruct | 7.6B | 70.72 | 65.77 | 88.52 | 58.97 | 85.9 | 50.47 | 58.09 | 82.69 | 35.74 |
246
+ | gemini-embedding-exp-03-07 | - | 73.3 | 67.67 | 90.05 | 59.39 | 87.7 | 48.59 | 64.35 | 85.29 | 38.28 |
247
+ | **Qwen3-Embedding-0.6B** | 0.6B | 70.70 | 64.88 | 85.76 | 54.05 | 84.37 | 48.18 | 61.83 | 86.57 | 33.43 |
248
+ | **Qwen3-Embedding-4B** | 4B | 74.60 | 68.10 | 89.84 | 57.51 | 87.01 | 50.76 | 68.46 | 88.72 | 34.39 |
249
+ | **Qwen3-Embedding-8B** | 8B | 75.22 | 68.71 | 90.43 | 58.57 | 87.52 | 51.56 | 69.44 | 88.58 | 34.83 |
250
+
251
+ ### C-MTEB (MTEB Chinese)
252
+
253
+ | C-MTEB | Param. | Mean(Task) | Mean(Type) | Class. | Clust. | Pair Class. | Rerank. | Retr. | STS |
254
+ |------------------|--------|------------|------------|--------|--------|-------------|---------|-------|-------|
255
+ | multilingual-e5-large-instruct | 0.6B | 58.08 | 58.24 | 69.80 | 48.23 | 64.52 | 57.45 | 63.65 | 45.81 |
256
+ | bge-multilingual-gemma2 | 9B | 67.64 | 75.31 | 59.30 | 86.67 | 68.28 | 73.73 | 55.19 | - |
257
+ | gte-Qwen2-1.5B-instruct | 1.5B | 67.12 | 67.79 | 72.53 | 54.61 | 79.5 | 68.21 | 71.86 | 60.05 |
258
+ | gte-Qwen2-7B-instruct | 7.6B | 71.62 | 72.19 | 75.77 | 66.06 | 81.16 | 69.24 | 75.70 | 65.20 |
259
+ | ritrieve_zh_v1 | 0.3B | 72.71 | 73.85 | 76.88 | 66.5 | 85.98 | 72.86 | 76.97 | 63.92 |
260
+ | **Qwen3-Embedding-0.6B** | 0.6B | 66.33 | 67.45 | 71.40 | 68.74 | 76.42 | 62.58 | 71.03 | 54.52 |
261
+ | **Qwen3-Embedding-4B** | 4B | 72.27 | 73.51 | 75.46 | 77.89 | 83.34 | 66.05 | 77.03 | 61.26 |
262
+ | **Qwen3-Embedding-8B** | 8B | 73.84 | 75.00 | 76.97 | 80.08 | 84.23 | 66.99 | 78.21 | 63.53 |
263
+
264
+
265
+ ## Citation
266
+
267
+ If you find our work helpful, feel free to give us a cite.
268
+
269
+ ```
270
+ @article{qwen3embedding,
271
+ title={Qwen3 Embedding: Advancing Text Embedding and Reranking Through Foundation Models},
272
+ author={Zhang, Yanzhao and Li, Mingxin and Long, Dingkun and Zhang, Xin and Lin, Huan and Yang, Baosong and Xie, Pengjun and Yang, An and Liu, Dayiheng and Lin, Junyang and Huang, Fei and Zhou, Jingren},
273
+ journal={arXiv preprint arXiv:2506.05176},
274
+ year={2025}
275
+ }
276
+ ```
277
+ # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
278
+
279
+ Help me test my **AI-Powered Free Network Monitor Assistant** with **quantum-ready security checks**:
280
+
281
+ 👉 [Free Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)
282
+
283
+
284
+ The full Open Source Code for the Free Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Free Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder)
285
+
286
+ 💬 **How to test**:
287
+ Choose an **AI assistant type**:
288
+ - `TurboLLM` (GPT-4.1-mini)
289
+ - `HugLLM` (Hugginface Open-source models)
290
+ - `TestLLM` (Experimental CPU-only)
291
+
292
+ ### **What I’m Testing**
293
+ I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:
294
+ - **Function calling** against live network services
295
+ - **How small can a model go** while still handling:
296
+ - Automated **Nmap security scans**
297
+ - **Quantum-readiness checks**
298
+ - **Network Monitoring tasks**
299
+
300
+ 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):
301
+ - ✅ **Zero-configuration setup**
302
+ - ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low.
303
+ - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!
304
+
305
+ ### **Other Assistants**
306
+ 🟢 **TurboLLM** – Uses **gpt-4.1-mini** :
307
+ - **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited.
308
+ - **Create custom cmd processors to run .net code on Free Network Monitor Agents**
309
+ - **Real-time network diagnostics and monitoring**
310
+ - **Security Audits**
311
+ - **Penetration testing** (Nmap/Metasploit)
312
+
313
+ 🔵 **HugLLM** – Latest Open-source models:
314
+ - 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.
315
+
316
+ ### 💡 **Example commands you could test**:
317
+ 1. `"Give me info on my websites SSL certificate"`
318
+ 2. `"Check if my server is using quantum safe encyption for communication"`
319
+ 3. `"Run a comprehensive security audit on my server"`
320
+ 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Free Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution!
321
+
322
+ ### Final Word
323
+
324
+ I fund the servers used to create these model files, run the Free Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Free Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.
325
+
326
+ If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone.
327
+
328
+ I'm also open to job opportunities or sponsorship.
329
+
330
+ Thank you! 😊
configuration.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"task":"sentence-embedding"}