Add files using upload-large-folder tool
Browse files- README.md +254 -0
- chat_template.jinja +111 -0
- config.json +107 -0
- configuration_deepseek.py +210 -0
- generation_config.json +6 -0
- model-00001-of-00135.safetensors +3 -0
- model-00002-of-00135.safetensors +3 -0
- model-00003-of-00135.safetensors +3 -0
- model-00007-of-00135.safetensors +3 -0
- model-00010-of-00135.safetensors +3 -0
- model-00011-of-00135.safetensors +3 -0
- model-00012-of-00135.safetensors +3 -0
- model-00014-of-00135.safetensors +3 -0
- model-00016-of-00135.safetensors +3 -0
- model-00031-of-00135.safetensors +3 -0
- model-00032-of-00135.safetensors +3 -0
- model-00040-of-00135.safetensors +3 -0
- model-00042-of-00135.safetensors +3 -0
- model-00043-of-00135.safetensors +3 -0
- model-00046-of-00135.safetensors +3 -0
- model-00048-of-00135.safetensors +3 -0
- model-00049-of-00135.safetensors +3 -0
- model-00055-of-00135.safetensors +3 -0
- model-00058-of-00135.safetensors +3 -0
- model-00060-of-00135.safetensors +3 -0
- model-00063-of-00135.safetensors +3 -0
- model-00064-of-00135.safetensors +3 -0
- model-00071-of-00135.safetensors +3 -0
- model-00072-of-00135.safetensors +3 -0
- model-00079-of-00135.safetensors +3 -0
- model-00080-of-00135.safetensors +3 -0
- model-00084-of-00135.safetensors +3 -0
- model-00090-of-00135.safetensors +3 -0
- model-00095-of-00135.safetensors +3 -0
- model-00099-of-00135.safetensors +3 -0
- model-00107-of-00135.safetensors +3 -0
- model-00111-of-00135.safetensors +3 -0
- model-00112-of-00135.safetensors +3 -0
- model-00117-of-00135.safetensors +3 -0
- model-00126-of-00135.safetensors +3 -0
- model-00128-of-00135.safetensors +3 -0
- model-00130-of-00135.safetensors +3 -0
- model-00132-of-00135.safetensors +3 -0
- model-00134-of-00135.safetensors +3 -0
- model-00135-of-00135.safetensors +3 -0
- model.safetensors.index.json +0 -0
- recipe.yaml +6 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +0 -0
README.md
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
library_name: transformers
|
4 |
+
base_model:
|
5 |
+
- deepseek-ai/DeepSeek-V3-Base
|
6 |
+
---
|
7 |
+
|
8 |
+
<p align="center">
|
9 |
+
<img src="images/deep-cogito-logo.png" alt="Logo" width="40%">
|
10 |
+
</p>
|
11 |
+
|
12 |
+
|
13 |
+
# Cogito v2 preview - 671B MoE (FP8)
|
14 |
+
|
15 |
+
[Blog Post](https://www.deepcogito.com/research/cogito-v2-preview)
|
16 |
+
|
17 |
+
The Cogito v2 LLMs are instruction tuned generative models. All models are released under an open license for commercial use.
|
18 |
+
|
19 |
+
- Cogito v2 models are hybrid reasoning models. Each model can answer directly (standard LLM), or self-reflect before answering (like reasoning models).
|
20 |
+
- The LLMs are trained using **Iterated Distillation and Amplification (IDA)** - an scalable and efficient alignment strategy for superintelligence using iterative self-improvement.
|
21 |
+
- The models have been optimized for coding, STEM, instruction following and general helpfulness, and have significantly higher multilingual, coding and tool calling capabilities than size equivalent counterparts.
|
22 |
+
- In both standard and reasoning modes, Cogito v2-preview models outperform their size equivalent counterparts on common industry benchmarks.
|
23 |
+
- This model is trained in over 30 languages and supports a context length of 128k.
|
24 |
+
|
25 |
+
# Evaluations
|
26 |
+
For detailed evaluations, please refer to the [Blog Post](https://www.deepcogito.com/research/cogito-v2-preview).
|
27 |
+
|
28 |
+
|
29 |
+
# Usage
|
30 |
+
Here is a snippet below for usage with Transformers:
|
31 |
+
|
32 |
+
```python
|
33 |
+
import transformers
|
34 |
+
import torch
|
35 |
+
|
36 |
+
model_id = "deepcogito/cogito-v2-preview-llama-671B-MoE-FP8"
|
37 |
+
|
38 |
+
pipeline = transformers.pipeline(
|
39 |
+
"text-generation",
|
40 |
+
model=model_id,
|
41 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
42 |
+
device_map="auto",
|
43 |
+
)
|
44 |
+
|
45 |
+
messages = [
|
46 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
47 |
+
{"role": "user", "content": "Give me a short introduction to LLMs."},
|
48 |
+
]
|
49 |
+
|
50 |
+
outputs = pipeline(
|
51 |
+
messages,
|
52 |
+
max_new_tokens=512,
|
53 |
+
)
|
54 |
+
|
55 |
+
print(outputs[0]["generated_text"][-1])
|
56 |
+
```
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
## Implementing extended thinking
|
61 |
+
- By default, the model will answer in the standard mode.
|
62 |
+
- To enable thinking, you can do any one of the two methods:
|
63 |
+
- Set `enable_thinking=True` while applying the chat template.
|
64 |
+
- Add a specific system prompt, along with prefilling the response with "\<think\>\n".
|
65 |
+
|
66 |
+
**NOTE: Unlike Cogito v1 models, we initiate the response with "\<think\>\n" at the beginning of every output when reasoning is enabled. This is because hybrid models can be brittle at times (<0.1% of the cases), and adding a "\<think\>\n" ensures that the model does indeed respect thinking.**
|
67 |
+
|
68 |
+
### Method 1 - Set enable_thinking=True in the tokenizer
|
69 |
+
If you are using Huggingface tokenizers, then you can simply use add the argument `enable_thinking=True` to the tokenization (this option is added to the chat template).
|
70 |
+
|
71 |
+
Here is an example -
|
72 |
+
```python
|
73 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
74 |
+
|
75 |
+
model_name = "deepcogito/cogito-v2-preview-llama-671B-MoE-FP8"
|
76 |
+
|
77 |
+
model = AutoModelForCausalLM.from_pretrained(
|
78 |
+
model_name,
|
79 |
+
torch_dtype="auto",
|
80 |
+
device_map="auto"
|
81 |
+
)
|
82 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
83 |
+
|
84 |
+
prompt = "Give me a short introduction to LLMs."
|
85 |
+
messages = [
|
86 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
87 |
+
{"role": "user", "content": prompt}
|
88 |
+
]
|
89 |
+
|
90 |
+
text = tokenizer.apply_chat_template(
|
91 |
+
messages,
|
92 |
+
tokenize=False,
|
93 |
+
add_generation_prompt=True,
|
94 |
+
enable_thinking=True
|
95 |
+
)
|
96 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
97 |
+
|
98 |
+
generated_ids = model.generate(
|
99 |
+
**model_inputs,
|
100 |
+
max_new_tokens=512
|
101 |
+
)
|
102 |
+
generated_ids = [
|
103 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
104 |
+
]
|
105 |
+
|
106 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
107 |
+
print(response)
|
108 |
+
```
|
109 |
+
|
110 |
+
### Method 2 - Add a specific system prompt, along with prefilling the response with "\<think\>\n".
|
111 |
+
To enable thinking using this method, you need to do two parts -
|
112 |
+
|
113 |
+
|
114 |
+
Step 1 - Simply use this in the system prompt `system_instruction = 'Enable deep thinking subroutine.'`
|
115 |
+
|
116 |
+
If you already have a system_instruction, then use `system_instruction = 'Enable deep thinking subroutine.' + '\n\n' + system_instruction`.
|
117 |
+
|
118 |
+
Step 2 - Prefil the response with the tokens `"<think>\n"`.
|
119 |
+
|
120 |
+
Here is an example -
|
121 |
+
|
122 |
+
```python
|
123 |
+
import transformers
|
124 |
+
import torch
|
125 |
+
|
126 |
+
model_name = "deepcogito/cogito-v2-preview-llama-109B-MoE"
|
127 |
+
|
128 |
+
model = AutoModelForCausalLM.from_pretrained(
|
129 |
+
model_name,
|
130 |
+
torch_dtype="auto",
|
131 |
+
device_map="auto"
|
132 |
+
)
|
133 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
134 |
+
|
135 |
+
# Step 1 - Add deep thinking instruction.
|
136 |
+
DEEP_THINKING_INSTRUCTION = "Enable deep thinking subroutine."
|
137 |
+
|
138 |
+
messages = [
|
139 |
+
{"role": "system", "content": DEEP_THINKING_INSTRUCTION},
|
140 |
+
{"role": "user", "content": "Write a bash script that takes a matrix represented as a string with format '[1,2],[3,4],[5,6]' and prints the transpose in the same format."},
|
141 |
+
]
|
142 |
+
|
143 |
+
text = tokenizer.apply_chat_template(
|
144 |
+
messages,
|
145 |
+
tokenize=False,
|
146 |
+
add_generation_prompt=True
|
147 |
+
)
|
148 |
+
|
149 |
+
# Step 2 - Prefill response with "<think>\n".
|
150 |
+
text += "<think>\n"
|
151 |
+
|
152 |
+
# Now, continue as usual.
|
153 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
154 |
+
|
155 |
+
generated_ids = model.generate(
|
156 |
+
**model_inputs,
|
157 |
+
max_new_tokens=512
|
158 |
+
)
|
159 |
+
generated_ids = [
|
160 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
161 |
+
]
|
162 |
+
|
163 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
164 |
+
print(response)
|
165 |
+
```
|
166 |
+
|
167 |
+
|
168 |
+
Similarly, if you have a system prompt, you can append the `DEEP_THINKING_INSTRUCTION` to the beginning in this way -
|
169 |
+
|
170 |
+
```python
|
171 |
+
DEEP_THINKING_INSTRUCTION = "Enable deep thinking subroutine."
|
172 |
+
|
173 |
+
system_prompt = "Reply to each prompt with only the actual code - no explanations."
|
174 |
+
prompt = "Write a bash script that takes a matrix represented as a string with format '[1,2],[3,4],[5,6]' and prints the transpose in the same format."
|
175 |
+
|
176 |
+
messages = [
|
177 |
+
{"role": "system", "content": DEEP_THINKING_INSTRUCTION + '\n\n' + system_prompt},
|
178 |
+
{"role": "user", "content": prompt}
|
179 |
+
]
|
180 |
+
```
|
181 |
+
|
182 |
+
|
183 |
+
# Tool Calling
|
184 |
+
Cogito models support tool calling (single, parallel, multiple and parallel_multiple) both in standard and extended thinking mode.
|
185 |
+
|
186 |
+
Here is a snippet -
|
187 |
+
|
188 |
+
```python
|
189 |
+
# First, define a tool
|
190 |
+
def get_current_temperature(location: str) -> float:
|
191 |
+
"""
|
192 |
+
Get the current temperature at a location.
|
193 |
+
|
194 |
+
Args:
|
195 |
+
location: The location to get the temperature for, in the format "City, Country"
|
196 |
+
Returns:
|
197 |
+
The current temperature at the specified location in the specified units, as a float.
|
198 |
+
"""
|
199 |
+
return 22. # A real function should probably actually get the temperature!
|
200 |
+
|
201 |
+
# Next, create a chat and apply the chat template
|
202 |
+
messages = [
|
203 |
+
{"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
|
204 |
+
]
|
205 |
+
|
206 |
+
model_inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True)
|
207 |
+
|
208 |
+
text = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True, tokenize=False)
|
209 |
+
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False).to(model.device)
|
210 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
211 |
+
output_text = tokenizer.batch_decode(outputs)[0][len(text):]
|
212 |
+
print(output_text)
|
213 |
+
```
|
214 |
+
|
215 |
+
This will result in the output -
|
216 |
+
```
|
217 |
+
<|tool▁calls▁begin|><|tool▁call▁begin|>function<|tool▁sep|>get_current_temperature
|
218 |
+
```json
|
219 |
+
{"location":"Paris, France"}
|
220 |
+
```<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|>
|
221 |
+
```
|
222 |
+
|
223 |
+
You can then generate text from this input as normal. If the model generates a tool call, you should add it to the chat like so:
|
224 |
+
|
225 |
+
```python
|
226 |
+
tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
|
227 |
+
messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
|
228 |
+
```
|
229 |
+
|
230 |
+
and then call the tool and append the result, with the `tool` role, like so:
|
231 |
+
|
232 |
+
```python
|
233 |
+
messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
|
234 |
+
```
|
235 |
+
|
236 |
+
After that, you can `generate()` again to let the model use the tool result in the chat:
|
237 |
+
|
238 |
+
```python
|
239 |
+
text = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True, tokenize=False)
|
240 |
+
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False).to(model.device)
|
241 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
242 |
+
output_text = tokenizer.batch_decode(outputs)[0][len(text):]
|
243 |
+
```
|
244 |
+
|
245 |
+
This should result in the string -
|
246 |
+
```
|
247 |
+
'The current temperature in Paris is 22.0 degrees.<|end▁of▁sentence|>'
|
248 |
+
```
|
249 |
+
|
250 |
+
## License
|
251 |
+
This repository and the model weights are licensed under **MIT License**.
|
252 |
+
|
253 |
+
## Contact
|
254 |
+
If you would like to reach out to our team, send an email to [contact@deepcogito.com](contact@deepcogito.com).
|
chat_template.jinja
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{# ==================================================================== #}
|
2 |
+
{# Deepseek v3 template with enable_thinking and tools support #}
|
3 |
+
{# ==================================================================== #}
|
4 |
+
{%- if not enable_thinking is defined %}{% set enable_thinking = false %}{% endif -%}
|
5 |
+
{%- if not tools is defined %}{% set tools = none %}{% endif -%}
|
6 |
+
{%- if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif -%}
|
7 |
+
|
8 |
+
{# --------------------------- Collect system prompt -------------------- #}
|
9 |
+
{%- set ns = namespace(system_prompt='', is_last_user=false, outputs_open=false, first_output=true) -%}
|
10 |
+
|
11 |
+
{%- if messages and messages[0].role == 'system' -%}
|
12 |
+
{%- set raw = messages[0].content -%}
|
13 |
+
{%- set ns.system_prompt = raw if raw is string else raw[0].text -%}
|
14 |
+
{%- set messages = messages[1:] -%}
|
15 |
+
{%- endif -%}
|
16 |
+
|
17 |
+
{# --------------------------- Inject deep thinking --------------------- #}
|
18 |
+
{%- if enable_thinking -%}
|
19 |
+
{%- set ns.system_prompt = ns.system_prompt and 'Enable deep thinking subroutine.
|
20 |
+
|
21 |
+
' ~ ns.system_prompt or 'Enable deep thinking subroutine.' -%}
|
22 |
+
{%- endif -%}
|
23 |
+
|
24 |
+
{# --------------------------- Append tools block ----------------------- #}
|
25 |
+
{%- if tools is not none -%}
|
26 |
+
{%- if ns.system_prompt -%}
|
27 |
+
{%- set ns.system_prompt = ns.system_prompt ~ '
|
28 |
+
|
29 |
+
You have the following functions available:
|
30 |
+
|
31 |
+
' -%}
|
32 |
+
{%- else -%}
|
33 |
+
{%- set ns.system_prompt = 'You have the following functions available:
|
34 |
+
|
35 |
+
' -%}
|
36 |
+
{%- endif -%}
|
37 |
+
{%- for t in tools -%}
|
38 |
+
{%- set ns.system_prompt = ns.system_prompt ~ "```json
|
39 |
+
" ~ (t | tojson(indent=4)) ~ "
|
40 |
+
```
|
41 |
+
|
42 |
+
" -%}
|
43 |
+
{%- endfor -%}
|
44 |
+
{%- endif -%}
|
45 |
+
|
46 |
+
{{- bos_token -}}{{- ns.system_prompt -}}
|
47 |
+
|
48 |
+
{# --------------------------- Iterate conversation --------------------- #}
|
49 |
+
{%- for m in messages -%}
|
50 |
+
{# --------------------------- USER ---------------------------------- #}
|
51 |
+
{%- if m.role == 'user' -%}
|
52 |
+
{%- set ns.is_last_user = true -%}
|
53 |
+
{%- set txt = m.content if m.content is string else m.content | selectattr('type','equalto','text') | map(attribute='text') | join('') -%}
|
54 |
+
{{- "<|User|>" -}}{{- txt -}}{{- "<|Assistant|>" -}}
|
55 |
+
{%- endif -%}
|
56 |
+
|
57 |
+
{# --------------------------- ASSISTANT with TOOL CALLS -------------- #}
|
58 |
+
{%- if m.role == 'assistant' and m.tool_calls is defined and m.tool_calls -%}
|
59 |
+
{%- set ns.is_last_user = false -%}
|
60 |
+
{%- set lead = m.content is string and m.content|trim or (m.content and m.content | selectattr('type','equalto','text') | map(attribute='text') | join('')) or '' -%}
|
61 |
+
{{- lead -}}{{- "<|tool▁calls▁begin|>" -}}
|
62 |
+
{%- for call in m.tool_calls -%}
|
63 |
+
{{- "<|tool▁call▁begin|>" -}}{{- call.type -}}{{- "<|tool▁sep|>" -}}{{- call.function.name -}}
|
64 |
+
{{- "
|
65 |
+
```json
|
66 |
+
" -}}{{- call.function.arguments -}}{{- "
|
67 |
+
```" -}}{{- "<|tool▁call▁end|>" -}}
|
68 |
+
{%- if not loop.last -%}{{- "
|
69 |
+
" -}}{%- endif -%}
|
70 |
+
{%- endfor -%}
|
71 |
+
{{- "<|tool▁calls▁end|>" -}}{{- "<|end▁of▁sentence|>" -}}
|
72 |
+
{%- endif -%}
|
73 |
+
|
74 |
+
{# --------------------------- ASSISTANT plain ------------------------ #}
|
75 |
+
{%- if m.role == 'assistant' and (m.tool_calls is not defined or not m.tool_calls) -%}
|
76 |
+
{%- set ns.is_last_user = false -%}
|
77 |
+
{%- set txt = m.content if m.content is string else m.content | selectattr('type','equalto','text') | map(attribute='text') | join('') -%}
|
78 |
+
{{- txt -}}{{- "<|end▁of▁sentence|>" -}}
|
79 |
+
{%- endif -%}
|
80 |
+
|
81 |
+
{# --------------------------- TOOL output ---------------------------- #}
|
82 |
+
{%- if m.role == 'tool' -%}
|
83 |
+
{%- set ns.is_last_user = false -%}
|
84 |
+
{%- set out_txt = m.content if m.content is string else m.content | selectattr('type','equalto','text') | map(attribute='text') | join('') -%}
|
85 |
+
{%- if not ns.outputs_open -%}
|
86 |
+
{{- "<|tool▁outputs▁begin|>" -}}
|
87 |
+
{%- set ns.outputs_open = true -%}
|
88 |
+
{%- endif -%}
|
89 |
+
{{- "<|tool▁output▁begin|>" -}}{{- out_txt -}}{{- "<|tool▁output▁end|>" -}}
|
90 |
+
{%- if loop.nextitem is defined and loop.nextitem.role == 'tool' -%}
|
91 |
+
{{- "
|
92 |
+
" -}}
|
93 |
+
{%- endif -%}
|
94 |
+
{%- if loop.nextitem is undefined or loop.nextitem.role != 'tool' -%}
|
95 |
+
{{- "<|tool▁outputs▁end|>" -}}
|
96 |
+
{%- set ns.outputs_open = false -%}
|
97 |
+
{%- endif -%}
|
98 |
+
{%- endif -%}
|
99 |
+
{%- endfor -%}
|
100 |
+
|
101 |
+
{%- if ns.outputs_open -%}
|
102 |
+
{{- "<|tool▁outputs▁end|>" -}}
|
103 |
+
{%- endif -%}
|
104 |
+
|
105 |
+
{%- if add_generation_prompt and not ns.is_last_user -%}
|
106 |
+
{{- "<|Assistant|>" -}}
|
107 |
+
{%- endif -%}
|
108 |
+
|
109 |
+
{%- if add_generation_prompt and enable_thinking -%}
|
110 |
+
{{- '<think>\n' -}}
|
111 |
+
{%- endif -%}
|
config.json
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"DeepseekV3ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_deepseek.DeepseekV3Config",
|
9 |
+
"AutoModel": "modeling_deepseek.DeepseekV3Model",
|
10 |
+
"AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"
|
11 |
+
},
|
12 |
+
"aux_loss_alpha": 0.001,
|
13 |
+
"bos_token_id": 0,
|
14 |
+
"eos_token_id": 1,
|
15 |
+
"ep_size": 1,
|
16 |
+
"first_k_dense_replace": 3,
|
17 |
+
"head_dim": 64,
|
18 |
+
"hidden_act": "silu",
|
19 |
+
"hidden_size": 7168,
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"intermediate_size": 18432,
|
22 |
+
"kv_lora_rank": 512,
|
23 |
+
"max_position_embeddings": 163840,
|
24 |
+
"model_type": "deepseek_v3",
|
25 |
+
"moe_intermediate_size": 2048,
|
26 |
+
"moe_layer_freq": 1,
|
27 |
+
"n_group": 8,
|
28 |
+
"n_routed_experts": 256,
|
29 |
+
"n_shared_experts": 1,
|
30 |
+
"norm_topk_prob": true,
|
31 |
+
"num_attention_heads": 128,
|
32 |
+
"num_experts_per_tok": 8,
|
33 |
+
"num_hidden_layers": 61,
|
34 |
+
"num_key_value_heads": 128,
|
35 |
+
"num_nextn_predict_layers": 1,
|
36 |
+
"pretraining_tp": 1,
|
37 |
+
"q_lora_rank": 1536,
|
38 |
+
"qk_head_dim": 192,
|
39 |
+
"qk_nope_head_dim": 128,
|
40 |
+
"qk_rope_head_dim": 64,
|
41 |
+
"quantization_config": {
|
42 |
+
"config_groups": {
|
43 |
+
"group_0": {
|
44 |
+
"input_activations": {
|
45 |
+
"actorder": null,
|
46 |
+
"block_structure": null,
|
47 |
+
"dynamic": true,
|
48 |
+
"group_size": null,
|
49 |
+
"num_bits": 8,
|
50 |
+
"observer": null,
|
51 |
+
"observer_kwargs": {},
|
52 |
+
"strategy": "token",
|
53 |
+
"symmetric": true,
|
54 |
+
"type": "float"
|
55 |
+
},
|
56 |
+
"output_activations": null,
|
57 |
+
"targets": [
|
58 |
+
"Linear"
|
59 |
+
],
|
60 |
+
"weights": {
|
61 |
+
"actorder": null,
|
62 |
+
"block_structure": null,
|
63 |
+
"dynamic": false,
|
64 |
+
"group_size": null,
|
65 |
+
"num_bits": 8,
|
66 |
+
"observer": "minmax",
|
67 |
+
"observer_kwargs": {},
|
68 |
+
"strategy": "channel",
|
69 |
+
"symmetric": true,
|
70 |
+
"type": "float"
|
71 |
+
}
|
72 |
+
}
|
73 |
+
},
|
74 |
+
"format": "float-quantized",
|
75 |
+
"global_compression_ratio": null,
|
76 |
+
"ignore": [
|
77 |
+
"lm_head"
|
78 |
+
],
|
79 |
+
"kv_cache_scheme": null,
|
80 |
+
"quant_method": "compressed-tensors",
|
81 |
+
"quantization_status": "compressed"
|
82 |
+
},
|
83 |
+
"rms_norm_eps": 1e-06,
|
84 |
+
"rope_interleave": true,
|
85 |
+
"rope_scaling": {
|
86 |
+
"beta_fast": 32.0,
|
87 |
+
"beta_slow": 1.0,
|
88 |
+
"factor": 40.0,
|
89 |
+
"mscale": 1.0,
|
90 |
+
"mscale_all_dim": 1.0,
|
91 |
+
"original_max_position_embeddings": 4096,
|
92 |
+
"rope_type": "yarn",
|
93 |
+
"type": "yarn"
|
94 |
+
},
|
95 |
+
"rope_theta": 10000,
|
96 |
+
"routed_scaling_factor": 2.5,
|
97 |
+
"scoring_func": "sigmoid",
|
98 |
+
"seq_aux": true,
|
99 |
+
"tie_word_embeddings": false,
|
100 |
+
"topk_group": 4,
|
101 |
+
"topk_method": "noaux_tc",
|
102 |
+
"torch_dtype": "bfloat16",
|
103 |
+
"transformers_version": "4.53.0",
|
104 |
+
"use_cache": true,
|
105 |
+
"v_head_dim": 128,
|
106 |
+
"vocab_size": 128815
|
107 |
+
}
|
configuration_deepseek.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
from transformers.utils import logging
|
3 |
+
|
4 |
+
logger = logging.get_logger(__name__)
|
5 |
+
|
6 |
+
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
7 |
+
class DeepseekV3Config(PretrainedConfig):
|
8 |
+
r"""
|
9 |
+
This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
|
10 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
11 |
+
defaults will yield a similar configuration to that of the DeepSeek-V3.
|
12 |
+
|
13 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
14 |
+
documentation from [`PretrainedConfig`] for more information.
|
15 |
+
|
16 |
+
|
17 |
+
Args:
|
18 |
+
vocab_size (`int`, *optional*, defaults to 129280):
|
19 |
+
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
|
20 |
+
`inputs_ids` passed when calling [`DeepseekV3Model`]
|
21 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
22 |
+
Dimension of the hidden representations.
|
23 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
24 |
+
Dimension of the MLP representations.
|
25 |
+
moe_intermediate_size (`int`, *optional*, defaults to 1407):
|
26 |
+
Dimension of the MoE representations.
|
27 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
28 |
+
Number of hidden layers in the Transformer decoder.
|
29 |
+
num_nextn_predict_layers (`int`, *optional*, defaults to 1):
|
30 |
+
Number of nextn predict layers in the DeepSeekV3 Model.
|
31 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
32 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
33 |
+
n_shared_experts (`int`, *optional*, defaults to None):
|
34 |
+
Number of shared experts, None means dense model.
|
35 |
+
n_routed_experts (`int`, *optional*, defaults to None):
|
36 |
+
Number of routed experts, None means dense model.
|
37 |
+
routed_scaling_factor (`float`, *optional*, defaults to 1.0):
|
38 |
+
Scaling factor or routed experts.
|
39 |
+
topk_method (`str`, *optional*, defaults to `gready`):
|
40 |
+
Topk method used in routed gate.
|
41 |
+
n_group (`int`, *optional*, defaults to None):
|
42 |
+
Number of groups for routed experts.
|
43 |
+
topk_group (`int`, *optional*, defaults to None):
|
44 |
+
Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
|
45 |
+
num_experts_per_tok (`int`, *optional*, defaults to None):
|
46 |
+
Number of selected experts, None means dense model.
|
47 |
+
moe_layer_freq (`int`, *optional*, defaults to 1):
|
48 |
+
The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
|
49 |
+
first_k_dense_replace (`int`, *optional*, defaults to 0):
|
50 |
+
Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
|
51 |
+
\--k dense layers--/
|
52 |
+
norm_topk_prob (`bool`, *optional*, defaults to False):
|
53 |
+
Whether to normalize the weights of the routed experts.
|
54 |
+
scoring_func (`str`, *optional*, defaults to 'softmax'):
|
55 |
+
Method of computing expert weights.
|
56 |
+
aux_loss_alpha (`float`, *optional*, defaults to 0.001):
|
57 |
+
Auxiliary loss weight coefficient.
|
58 |
+
seq_aux = (`bool`, *optional*, defaults to True):
|
59 |
+
Whether to compute the auxiliary loss for each individual sample.
|
60 |
+
num_key_value_heads (`int`, *optional*):
|
61 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
62 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
63 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
64 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
65 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
66 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
67 |
+
`num_attention_heads`.
|
68 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
69 |
+
The non-linear activation function (function or string) in the decoder.
|
70 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
71 |
+
The maximum sequence length that this model might ever be used with.
|
72 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
73 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
74 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
75 |
+
The epsilon used by the rms normalization layers.
|
76 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
77 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
78 |
+
relevant if `config.is_decoder=True`.
|
79 |
+
pad_token_id (`int`, *optional*):
|
80 |
+
Padding token id.
|
81 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
82 |
+
Beginning of stream token id.
|
83 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
84 |
+
End of stream token id.
|
85 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
86 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
87 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
88 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
89 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
90 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
91 |
+
Whether to tie weight embeddings
|
92 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
93 |
+
The base period of the RoPE embeddings.
|
94 |
+
rope_scaling (`Dict`, *optional*):
|
95 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
96 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
97 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
98 |
+
`max_position_embeddings` to the expected new maximum.
|
99 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
100 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
101 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
102 |
+
The dropout ratio for the attention probabilities.
|
103 |
+
|
104 |
+
```python
|
105 |
+
>>> from transformers import DeepseekV3Model, DeepseekV3Config
|
106 |
+
|
107 |
+
>>> # Initializing a Deepseek-V3 style configuration
|
108 |
+
>>> configuration = DeepseekV3Config()
|
109 |
+
|
110 |
+
>>> # Accessing the model configuration
|
111 |
+
>>> configuration = model.config
|
112 |
+
```"""
|
113 |
+
|
114 |
+
model_type = "deepseek_v3"
|
115 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vocab_size=129280,
|
120 |
+
hidden_size=7168,
|
121 |
+
intermediate_size=18432,
|
122 |
+
moe_intermediate_size = 2048,
|
123 |
+
num_hidden_layers=61,
|
124 |
+
num_nextn_predict_layers=1,
|
125 |
+
num_attention_heads=128,
|
126 |
+
num_key_value_heads=128,
|
127 |
+
n_shared_experts = 1,
|
128 |
+
n_routed_experts = 256,
|
129 |
+
ep_size = 1,
|
130 |
+
routed_scaling_factor = 2.5,
|
131 |
+
kv_lora_rank = 512,
|
132 |
+
q_lora_rank = 1536,
|
133 |
+
qk_rope_head_dim = 64,
|
134 |
+
v_head_dim = 128,
|
135 |
+
qk_nope_head_dim = 128,
|
136 |
+
topk_method = 'noaux_tc',
|
137 |
+
n_group = 8,
|
138 |
+
topk_group = 4,
|
139 |
+
num_experts_per_tok = 8,
|
140 |
+
moe_layer_freq = 1,
|
141 |
+
first_k_dense_replace = 3,
|
142 |
+
norm_topk_prob = True,
|
143 |
+
scoring_func = 'sigmoid',
|
144 |
+
aux_loss_alpha = 0.001,
|
145 |
+
seq_aux = True,
|
146 |
+
hidden_act="silu",
|
147 |
+
max_position_embeddings=4096,
|
148 |
+
initializer_range=0.02,
|
149 |
+
rms_norm_eps=1e-6,
|
150 |
+
use_cache=True,
|
151 |
+
pad_token_id=None,
|
152 |
+
bos_token_id=0,
|
153 |
+
eos_token_id=1,
|
154 |
+
pretraining_tp=1,
|
155 |
+
tie_word_embeddings=False,
|
156 |
+
rope_theta=10000.0,
|
157 |
+
rope_scaling=None,
|
158 |
+
attention_bias=False,
|
159 |
+
attention_dropout=0.0,
|
160 |
+
**kwargs,
|
161 |
+
):
|
162 |
+
self.vocab_size = vocab_size
|
163 |
+
self.max_position_embeddings = max_position_embeddings
|
164 |
+
self.hidden_size = hidden_size
|
165 |
+
self.intermediate_size = intermediate_size
|
166 |
+
self.moe_intermediate_size = moe_intermediate_size
|
167 |
+
self.num_hidden_layers = num_hidden_layers
|
168 |
+
self.num_nextn_predict_layers = num_nextn_predict_layers
|
169 |
+
self.num_attention_heads = num_attention_heads
|
170 |
+
self.n_shared_experts = n_shared_experts
|
171 |
+
self.n_routed_experts = n_routed_experts
|
172 |
+
self.ep_size = ep_size
|
173 |
+
self.routed_scaling_factor = routed_scaling_factor
|
174 |
+
self.kv_lora_rank = kv_lora_rank
|
175 |
+
self.q_lora_rank = q_lora_rank
|
176 |
+
self.qk_rope_head_dim = qk_rope_head_dim
|
177 |
+
self.v_head_dim = v_head_dim
|
178 |
+
self.qk_nope_head_dim = qk_nope_head_dim
|
179 |
+
self.topk_method = topk_method
|
180 |
+
self.n_group = n_group
|
181 |
+
self.topk_group = topk_group
|
182 |
+
self.num_experts_per_tok = num_experts_per_tok
|
183 |
+
self.moe_layer_freq = moe_layer_freq
|
184 |
+
self.first_k_dense_replace = first_k_dense_replace
|
185 |
+
self.norm_topk_prob = norm_topk_prob
|
186 |
+
self.scoring_func = scoring_func
|
187 |
+
self.aux_loss_alpha = aux_loss_alpha
|
188 |
+
self.seq_aux = seq_aux
|
189 |
+
# for backward compatibility
|
190 |
+
if num_key_value_heads is None:
|
191 |
+
num_key_value_heads = num_attention_heads
|
192 |
+
|
193 |
+
self.num_key_value_heads = num_key_value_heads
|
194 |
+
self.hidden_act = hidden_act
|
195 |
+
self.initializer_range = initializer_range
|
196 |
+
self.rms_norm_eps = rms_norm_eps
|
197 |
+
self.pretraining_tp = pretraining_tp
|
198 |
+
self.use_cache = use_cache
|
199 |
+
self.rope_theta = rope_theta
|
200 |
+
self.rope_scaling = rope_scaling
|
201 |
+
self.attention_bias = attention_bias
|
202 |
+
self.attention_dropout = attention_dropout
|
203 |
+
|
204 |
+
super().__init__(
|
205 |
+
pad_token_id=pad_token_id,
|
206 |
+
bos_token_id=bos_token_id,
|
207 |
+
eos_token_id=eos_token_id,
|
208 |
+
tie_word_embeddings=tie_word_embeddings,
|
209 |
+
**kwargs,
|
210 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 1,
|
5 |
+
"transformers_version": "4.53.0"
|
6 |
+
}
|
model-00001-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6d7bb74d1f02537f496cb82bdfd2056dd7ed89b10140c59a872a15e31d1792f
|
3 |
+
size 4989505008
|
model-00002-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1f1cca90647254846a50de1215c43ae8381f3ef22e4b2e0741fd13e20a3b57e
|
3 |
+
size 4993855904
|
model-00003-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d520e4dd1cadcf7bf4c29e61327581fc6cf614aff11adf96f09f1fd941b75ae8
|
3 |
+
size 4993866592
|
model-00007-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:065af7fe792a792f847c45cd6aabfdf7b3dc113e8e3508a18c40666fe15bb8b6
|
3 |
+
size 4993856176
|
model-00010-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc54c84d60133cb7a3c8aaa9a0386eed0bb4807614df2648eca43f2627124925
|
3 |
+
size 4993861744
|
model-00011-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e98396d46e049b8774b7fddc3843cb5b06bc8b478235c2729f2f0c5ba8a95ff0
|
3 |
+
size 4993855712
|
model-00012-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75c1a9f889cf3ef9fdcd3ed1faa5c16b28ad97def38c7c0959a7553e3235852a
|
3 |
+
size 4993856352
|
model-00014-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd9fd84e4cf22ecfaa3f3160fb9a012c323cbb668ad3a8918695c23c4de45cdd
|
3 |
+
size 4993866472
|
model-00016-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22d772e564b84999c6ebeac28ac0e7dc5f5ff61a2bad84f6c3a6f56ffc3c7c44
|
3 |
+
size 4993856024
|
model-00031-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28360c7e425c31eea25c36998f4d08772108af978356cca0fbc3bc81ac2076df
|
3 |
+
size 4993862192
|
model-00032-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5ffc41db9d08b624230d1b8c86479ce521c3f10a17a41b9029e08f99f8b304b
|
3 |
+
size 4993856608
|
model-00040-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc7e584539a35601527f15ba76b340a78c2c9af174fd534b1bbf48ab1ba76529
|
3 |
+
size 4993862376
|
model-00042-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:faa3df45d5f7ee90fec7da68050e3b59bf4f31ffdd05fbac6a1af714543d9120
|
3 |
+
size 4993857032
|
model-00043-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc554ea5ec1e5dafaaed4e302841dee4ee26aa6689f69feadb81f6d38a54c158
|
3 |
+
size 4993861984
|
model-00046-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef85409808b9c5a095b6d1119d8f8e87e26eed0aa71e5b019112c8cda907583b
|
3 |
+
size 4993866960
|
model-00048-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20045452dfd6398a358ddc1fb54412fe3d2b4ada9ea05f3ee74d02629e5b6f26
|
3 |
+
size 4993856512
|
model-00049-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15b07911e0fb80c01bdd09e1f93aae78865f52d5cefd4e3fed235557270f3464
|
3 |
+
size 4993857032
|
model-00055-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb53d1bb43669ab85b19b14f43b27e64f0160b9f4f0f1256acdb8c29ad23d85c
|
3 |
+
size 4993856560
|
model-00058-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb9edcb6e48608540eee80076f0f3120052521fd041842d3ab33847aa0636dfb
|
3 |
+
size 4993857032
|
model-00060-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c05568c53c226911bcdbab0f0e5c8bc8d5fb9728a7461759495e614a6ced76bd
|
3 |
+
size 4993856832
|
model-00063-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b459449fee2cb54b90c3ed4d1dd6c7811097d2eb95dbc2b603b27fb2987dbdcf
|
3 |
+
size 4964534304
|
model-00064-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54921ff672a942a3e16c78caa24c6e69d3738a9e6e6e74966a532fde19201118
|
3 |
+
size 4993805424
|
model-00071-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77962f002abbcdc4af6d554403f9396349673c9e21c7b6a58f3daaa28bf08f89
|
3 |
+
size 4993866688
|
model-00072-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05fb152e3823e0421b256f8b1f703366574935810bfdc4de386bb13998459d6d
|
3 |
+
size 4993857032
|
model-00079-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44eb49ee6bd4674b5b5b866124e6b4535792f7f535aed44857206f7930ad2817
|
3 |
+
size 4993857032
|
model-00080-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e308c88f7b61ac6241d602e11a3b74cf43a3b577de886f88a87820c2c2a70a4a
|
3 |
+
size 4993861984
|
model-00084-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a221b09968605bf9796e7889a662c0fc2674b1e4ee98a51cbe7f89fbc12a9c6
|
3 |
+
size 4993862224
|
model-00090-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ce0afb7b5e419175d6a829c4ec69fa44e44b72b73f91d8e7f6c46604bf1f37d
|
3 |
+
size 4993856840
|
model-00095-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ece1ccb5fa55e9910c9bec1ebb41d6a159784d511d837c67f6e1bc30734c663c
|
3 |
+
size 4993857032
|
model-00099-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3654c3c895b8a25e8c2a45e2abac0973674bfae051902c44df52a56303d0b525
|
3 |
+
size 4993856696
|
model-00107-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:171a04e26d70d3281369c5c1364b98647908066257a05a92a1242adb1cb98814
|
3 |
+
size 4993862264
|
model-00111-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c8ff905d747f3ff91e6cd0c235ed12ed26c9d1fb20e9c3505ef019dda1acee7
|
3 |
+
size 4993857008
|
model-00112-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:314e4165a976c71a7842d9522da3acf83bc92f0e37d52f255782eebe38b43116
|
3 |
+
size 4993862000
|
model-00117-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7707ecbf184f8d14eb6ce2417f42527f071fcfada9ec5e0698ae4bab73b9354a
|
3 |
+
size 4993862032
|
model-00126-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb82c6b60cc68b01b0181c7f4a2fa6a0ee0ebf2d73162a85800fac6e5dd0228f
|
3 |
+
size 4993861984
|
model-00128-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14ba895c088d2334a75ef65a51b12e36fda82245e5078f5903273ab8970aeeb5
|
3 |
+
size 4993862096
|
model-00130-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:166b10be78bcb8cb9c0a5b4157880e8c4688672ac13709551556b0eac9aea0d5
|
3 |
+
size 4993862304
|
model-00132-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4e3c717253042a1d2ae43b850c1bb558bf4e7f6860581e33b90e4b894bf4ab4
|
3 |
+
size 4993857032
|
model-00134-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef233e025de65e86d73ddc08d531d27a338724b19339d453ba538ace8e508004
|
3 |
+
size 4993867216
|
model-00135-of-00135.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c1b8d17dc2cb1055088e76568eebd068cd57282297ec01c0d580564bb1f9aab
|
3 |
+
size 4185771368
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
recipe.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
default_stage:
|
2 |
+
default_modifiers:
|
3 |
+
QuantizationModifier:
|
4 |
+
targets: [Linear]
|
5 |
+
ignore: [lm_head]
|
6 |
+
scheme: FP8_DYNAMIC
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin▁of▁sentence|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|end▁of▁sentence|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|▁pad▁|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|