# vLLM Scripts Development Notes ## Repository Purpose This repository contains UV scripts for vLLM-based inference tasks. Focus on GPU-accelerated inference using vLLM's optimized engine. ## Key Patterns ### 1. GPU Requirements All scripts MUST check for GPU availability: ```python if not torch.cuda.is_available(): logger.error("CUDA is not available. This script requires a GPU.") sys.exit(1) ``` ### 2. vLLM Docker Image Always use `vllm/vllm-openai:latest` for HF Jobs - it has all dependencies pre-installed. ### 3. Dependencies Include custom PyPI indexes for vLLM and FlashInfer: ```python # [[tool.uv.index]] # url = "https://flashinfer.ai/whl/cu126/torch2.6" # # [[tool.uv.index]] # url = "https://wheels.vllm.ai/nightly" ``` ## Current Scripts 1. **classify-dataset.py**: BERT-style text classification - Uses vLLM's classify task - Supports batch processing with configurable size - Automatically extracts label mappings from model config ## Future Scripts Potential additions: - Text generation with vLLM - Embedding generation using sentence transformers - Multi-modal inference - Structured output generation ## Testing Local testing requires GPU. For scripts without local GPU access: 1. Use HF Jobs with small test datasets 2. Verify script runs without syntax errors: `python -m py_compile script.py` 3. Check dependencies resolve: `uv pip compile` ## Performance Considerations - Default batch size: 10,000 for local, up to 100,000 for HF Jobs - L4 GPUs are cost-effective for classification - Monitor GPU memory usage and adjust batch sizes accordingly