Commit
·
ce61544
1
Parent(s):
e2896c4
Add vLLM classification script
Browse files- Add classify-dataset.py for batch text classification
- Support for BERT-style models via vLLM
- Automatic label mapping from model config
- GPU availability check
- Comprehensive README with HFJobs examples
- Development notes in CLAUDE.md
- .gitignore +6 -0
- CLAUDE.md +55 -0
- README.md +110 -0
- classify-dataset.py +286 -0
.gitignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.DS_Store
|
2 |
+
__pycache__/
|
3 |
+
*.pyc
|
4 |
+
.ruff_cache/
|
5 |
+
.venv/
|
6 |
+
*.log
|
CLAUDE.md
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# vLLM Scripts Development Notes
|
2 |
+
|
3 |
+
## Repository Purpose
|
4 |
+
This repository contains UV scripts for vLLM-based inference tasks. Focus on GPU-accelerated inference using vLLM's optimized engine.
|
5 |
+
|
6 |
+
## Key Patterns
|
7 |
+
|
8 |
+
### 1. GPU Requirements
|
9 |
+
All scripts MUST check for GPU availability:
|
10 |
+
```python
|
11 |
+
if not torch.cuda.is_available():
|
12 |
+
logger.error("CUDA is not available. This script requires a GPU.")
|
13 |
+
sys.exit(1)
|
14 |
+
```
|
15 |
+
|
16 |
+
### 2. vLLM Docker Image
|
17 |
+
Always use `vllm/vllm-openai:latest` for HF Jobs - it has all dependencies pre-installed.
|
18 |
+
|
19 |
+
### 3. Dependencies
|
20 |
+
Include custom PyPI indexes for vLLM and FlashInfer:
|
21 |
+
```python
|
22 |
+
# [[tool.uv.index]]
|
23 |
+
# url = "https://flashinfer.ai/whl/cu126/torch2.6"
|
24 |
+
#
|
25 |
+
# [[tool.uv.index]]
|
26 |
+
# url = "https://wheels.vllm.ai/nightly"
|
27 |
+
```
|
28 |
+
|
29 |
+
## Current Scripts
|
30 |
+
|
31 |
+
1. **classify-dataset.py**: BERT-style text classification
|
32 |
+
- Uses vLLM's classify task
|
33 |
+
- Supports batch processing with configurable size
|
34 |
+
- Automatically extracts label mappings from model config
|
35 |
+
|
36 |
+
## Future Scripts
|
37 |
+
|
38 |
+
Potential additions:
|
39 |
+
- Text generation with vLLM
|
40 |
+
- Embedding generation using sentence transformers
|
41 |
+
- Multi-modal inference
|
42 |
+
- Structured output generation
|
43 |
+
|
44 |
+
## Testing
|
45 |
+
|
46 |
+
Local testing requires GPU. For scripts without local GPU access:
|
47 |
+
1. Use HF Jobs with small test datasets
|
48 |
+
2. Verify script runs without syntax errors: `python -m py_compile script.py`
|
49 |
+
3. Check dependencies resolve: `uv pip compile`
|
50 |
+
|
51 |
+
## Performance Considerations
|
52 |
+
|
53 |
+
- Default batch size: 10,000 for local, up to 100,000 for HF Jobs
|
54 |
+
- L4 GPUs are cost-effective for classification
|
55 |
+
- Monitor GPU memory usage and adjust batch sizes accordingly
|
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
viewer: false
|
3 |
+
tags: [uv-script, vllm, gpu, inference]
|
4 |
+
---
|
5 |
+
|
6 |
+
# vLLM Inference Scripts
|
7 |
+
|
8 |
+
Ready-to-run scripts for GPU-accelerated inference using [vLLM](https://github.com/vllm-project/vllm).
|
9 |
+
|
10 |
+
## 📋 Available Scripts
|
11 |
+
|
12 |
+
### classify-dataset.py
|
13 |
+
|
14 |
+
Batch text classification using BERT-style models with vLLM's optimized inference engine.
|
15 |
+
|
16 |
+
**Features:**
|
17 |
+
- 🚀 High-throughput batch processing
|
18 |
+
- 🏷️ Automatic label mapping from model config
|
19 |
+
- 📊 Confidence scores for predictions
|
20 |
+
- 🤗 Direct integration with Hugging Face Hub
|
21 |
+
|
22 |
+
**Usage:**
|
23 |
+
```bash
|
24 |
+
# Local execution (requires GPU)
|
25 |
+
uv run classify-dataset.py \
|
26 |
+
davanstrien/ModernBERT-base-is-new-arxiv-dataset \
|
27 |
+
username/input-dataset \
|
28 |
+
username/output-dataset \
|
29 |
+
--inference-column text \
|
30 |
+
--batch-size 10000
|
31 |
+
```
|
32 |
+
|
33 |
+
**HF Jobs execution:**
|
34 |
+
```bash
|
35 |
+
hfjobs run \
|
36 |
+
--flavor l4x1 \
|
37 |
+
--secret HF_TOKEN=$(python -c "from huggingface_hub import HfFolder; print(HfFolder.get_token())") \
|
38 |
+
vllm/vllm-openai:latest \
|
39 |
+
/bin/bash -c '
|
40 |
+
uv run https://huggingface.co/datasets/uv-scripts/vllm/resolve/main/classify-dataset.py \
|
41 |
+
davanstrien/ModernBERT-base-is-new-arxiv-dataset \
|
42 |
+
username/input-dataset \
|
43 |
+
username/output-dataset \
|
44 |
+
--inference-column text \
|
45 |
+
--batch-size 100000
|
46 |
+
' \
|
47 |
+
--project vllm-classify \
|
48 |
+
--name my-classification-job
|
49 |
+
```
|
50 |
+
|
51 |
+
## 🎯 Requirements
|
52 |
+
|
53 |
+
All scripts in this collection require:
|
54 |
+
- **NVIDIA GPU** with CUDA support
|
55 |
+
- **Python 3.10+**
|
56 |
+
- **UV package manager** (auto-installed via script)
|
57 |
+
|
58 |
+
## 🚀 Performance Tips
|
59 |
+
|
60 |
+
### GPU Selection
|
61 |
+
- **L4 GPU** (`--flavor l4x1`): Best value for classification tasks
|
62 |
+
- **A10 GPU** (`--flavor a10`): Higher memory for larger models
|
63 |
+
- Adjust batch size based on GPU memory
|
64 |
+
|
65 |
+
### Batch Sizes
|
66 |
+
- **Local GPUs**: Start with 10,000 and adjust based on memory
|
67 |
+
- **HF Jobs**: Can use larger batches (50,000-100,000) with cloud GPUs
|
68 |
+
|
69 |
+
## 📚 About vLLM
|
70 |
+
|
71 |
+
vLLM is a high-throughput inference engine optimized for:
|
72 |
+
- Fast model serving with PagedAttention
|
73 |
+
- Efficient batch processing
|
74 |
+
- Support for various model architectures
|
75 |
+
- Seamless integration with Hugging Face models
|
76 |
+
|
77 |
+
## 🔧 Technical Details
|
78 |
+
|
79 |
+
### Dependencies
|
80 |
+
Scripts use vLLM's nightly builds and FlashInfer for optimal performance:
|
81 |
+
```python
|
82 |
+
# [[tool.uv.index]]
|
83 |
+
# url = "https://flashinfer.ai/whl/cu126/torch2.6"
|
84 |
+
#
|
85 |
+
# [[tool.uv.index]]
|
86 |
+
# url = "https://wheels.vllm.ai/nightly"
|
87 |
+
```
|
88 |
+
|
89 |
+
### Docker Image
|
90 |
+
For HF Jobs, we use the official vLLM Docker image: `vllm/vllm-openai:latest`
|
91 |
+
|
92 |
+
This image includes:
|
93 |
+
- Pre-installed CUDA libraries
|
94 |
+
- vLLM and all dependencies
|
95 |
+
- UV package manager
|
96 |
+
- Optimized for GPU inference
|
97 |
+
|
98 |
+
## 📝 Contributing
|
99 |
+
|
100 |
+
Have a vLLM script to share? We welcome contributions that:
|
101 |
+
- Solve real inference problems
|
102 |
+
- Include clear documentation
|
103 |
+
- Follow UV script best practices
|
104 |
+
- Include HF Jobs examples
|
105 |
+
|
106 |
+
## 🔗 Resources
|
107 |
+
|
108 |
+
- [vLLM Documentation](https://docs.vllm.ai/)
|
109 |
+
- [HF Jobs Guide](https://huggingface.co/docs/hub/spaces-gpu-jobs)
|
110 |
+
- [UV Scripts Organization](https://huggingface.co/uv-scripts)
|
classify-dataset.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# /// script
|
2 |
+
# requires-python = ">=3.10"
|
3 |
+
# dependencies = [
|
4 |
+
# "datasets",
|
5 |
+
# "flashinfer-python",
|
6 |
+
# "httpx",
|
7 |
+
# "huggingface-hub[hf_transfer]",
|
8 |
+
# "setuptools",
|
9 |
+
# "toolz",
|
10 |
+
# "torch",
|
11 |
+
# "transformers",
|
12 |
+
# "vllm",
|
13 |
+
# ]
|
14 |
+
#
|
15 |
+
# [[tool.uv.index]]
|
16 |
+
# url = "https://flashinfer.ai/whl/cu126/torch2.6"
|
17 |
+
#
|
18 |
+
# [[tool.uv.index]]
|
19 |
+
# url = "https://wheels.vllm.ai/nightly"
|
20 |
+
# ///
|
21 |
+
"""
|
22 |
+
Batch text classification using vLLM for efficient GPU inference.
|
23 |
+
|
24 |
+
This script loads a dataset from Hugging Face Hub, performs classification using
|
25 |
+
a BERT-style model via vLLM, and saves the results back to the Hub with predicted
|
26 |
+
labels and confidence scores.
|
27 |
+
|
28 |
+
Example usage:
|
29 |
+
# Local execution
|
30 |
+
uv run classify-dataset.py \\
|
31 |
+
davanstrien/ModernBERT-base-is-new-arxiv-dataset \\
|
32 |
+
username/input-dataset \\
|
33 |
+
username/output-dataset \\
|
34 |
+
--inference-column text \\
|
35 |
+
--batch-size 10000
|
36 |
+
|
37 |
+
# HF Jobs execution (see script output for full command)
|
38 |
+
hfjobs run --flavor l4x1 ...
|
39 |
+
"""
|
40 |
+
|
41 |
+
import argparse
|
42 |
+
import logging
|
43 |
+
import os
|
44 |
+
import sys
|
45 |
+
from typing import Optional
|
46 |
+
|
47 |
+
import httpx
|
48 |
+
import torch
|
49 |
+
import torch.nn.functional as F
|
50 |
+
import vllm
|
51 |
+
from datasets import load_dataset
|
52 |
+
from huggingface_hub import hf_hub_url, login
|
53 |
+
from toolz import concat, keymap, partition_all
|
54 |
+
from tqdm.auto import tqdm
|
55 |
+
from vllm import LLM
|
56 |
+
|
57 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
58 |
+
logger = logging.getLogger(__name__)
|
59 |
+
|
60 |
+
|
61 |
+
def check_gpu_availability():
|
62 |
+
"""Check if CUDA is available and log GPU information."""
|
63 |
+
if not torch.cuda.is_available():
|
64 |
+
logger.error("CUDA is not available. This script requires a GPU.")
|
65 |
+
logger.error("Please run on a machine with NVIDIA GPU or use HF Jobs with GPU flavor.")
|
66 |
+
sys.exit(1)
|
67 |
+
|
68 |
+
gpu_name = torch.cuda.get_device_name(0)
|
69 |
+
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3
|
70 |
+
logger.info(f"GPU detected: {gpu_name} with {gpu_memory:.1f} GB memory")
|
71 |
+
logger.info(f"vLLM version: {vllm.__version__}")
|
72 |
+
|
73 |
+
|
74 |
+
def get_model_id2label(hub_model_id: str) -> Optional[dict[int, str]]:
|
75 |
+
"""Extract label mapping from model's config.json on Hugging Face Hub."""
|
76 |
+
try:
|
77 |
+
response = httpx.get(
|
78 |
+
hf_hub_url(hub_model_id, filename="config.json"),
|
79 |
+
follow_redirects=True
|
80 |
+
)
|
81 |
+
if response.status_code != 200:
|
82 |
+
logger.warning(f"Could not fetch config.json for {hub_model_id}")
|
83 |
+
return None
|
84 |
+
|
85 |
+
data = response.json()
|
86 |
+
id2label = data.get("id2label")
|
87 |
+
|
88 |
+
if id2label is None:
|
89 |
+
logger.info("No id2label mapping found in config.json")
|
90 |
+
return None
|
91 |
+
|
92 |
+
# Convert string keys to integers
|
93 |
+
label_map = keymap(int, id2label)
|
94 |
+
logger.info(f"Found label mapping: {label_map}")
|
95 |
+
return label_map
|
96 |
+
|
97 |
+
except Exception as e:
|
98 |
+
logger.warning(f"Failed to parse config.json: {e}")
|
99 |
+
return None
|
100 |
+
|
101 |
+
|
102 |
+
def get_top_label(output, label_map: Optional[dict[int, str]] = None):
|
103 |
+
"""
|
104 |
+
Extract the top predicted label and confidence score from vLLM output.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
output: vLLM ClassificationRequestOutput
|
108 |
+
label_map: Optional mapping from label indices to label names
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
Tuple of (label, confidence_score)
|
112 |
+
"""
|
113 |
+
logits = torch.tensor(output.outputs.probs)
|
114 |
+
probs = F.softmax(logits, dim=0)
|
115 |
+
top_idx = torch.argmax(probs).item()
|
116 |
+
top_prob = probs[top_idx].item()
|
117 |
+
|
118 |
+
# Use label name if mapping available, otherwise use index
|
119 |
+
label = label_map.get(top_idx, str(top_idx)) if label_map else str(top_idx)
|
120 |
+
return label, top_prob
|
121 |
+
|
122 |
+
|
123 |
+
def main(
|
124 |
+
hub_model_id: str,
|
125 |
+
src_dataset_hub_id: str,
|
126 |
+
output_dataset_hub_id: str,
|
127 |
+
inference_column: str = "text",
|
128 |
+
batch_size: int = 10_000,
|
129 |
+
hf_token: Optional[str] = None,
|
130 |
+
):
|
131 |
+
"""
|
132 |
+
Main classification pipeline.
|
133 |
+
|
134 |
+
Args:
|
135 |
+
hub_model_id: Hugging Face model ID for classification
|
136 |
+
src_dataset_hub_id: Input dataset on Hugging Face Hub
|
137 |
+
output_dataset_hub_id: Where to save results on Hugging Face Hub
|
138 |
+
inference_column: Column name containing text to classify
|
139 |
+
batch_size: Number of examples to process at once
|
140 |
+
hf_token: Hugging Face authentication token
|
141 |
+
"""
|
142 |
+
# GPU check
|
143 |
+
check_gpu_availability()
|
144 |
+
|
145 |
+
# Authentication
|
146 |
+
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
|
147 |
+
if HF_TOKEN:
|
148 |
+
login(token=HF_TOKEN)
|
149 |
+
else:
|
150 |
+
logger.error("HF_TOKEN is required. Set via --hf-token or HF_TOKEN environment variable.")
|
151 |
+
sys.exit(1)
|
152 |
+
|
153 |
+
# Initialize vLLM with classification task
|
154 |
+
logger.info(f"Loading model: {hub_model_id}")
|
155 |
+
llm = LLM(model=hub_model_id, task="classify")
|
156 |
+
|
157 |
+
# Get label mapping if available
|
158 |
+
id2label = get_model_id2label(hub_model_id)
|
159 |
+
|
160 |
+
# Load dataset
|
161 |
+
logger.info(f"Loading dataset: {src_dataset_hub_id}")
|
162 |
+
dataset = load_dataset(src_dataset_hub_id, split="train")
|
163 |
+
total_examples = len(dataset)
|
164 |
+
logger.info(f"Dataset loaded with {total_examples:,} examples")
|
165 |
+
|
166 |
+
# Extract text column
|
167 |
+
if inference_column not in dataset.column_names:
|
168 |
+
logger.error(f"Column '{inference_column}' not found. Available columns: {dataset.column_names}")
|
169 |
+
sys.exit(1)
|
170 |
+
|
171 |
+
prompts = dataset[inference_column]
|
172 |
+
|
173 |
+
# Process in batches
|
174 |
+
logger.info(f"Starting classification with batch size {batch_size:,}")
|
175 |
+
all_results = []
|
176 |
+
|
177 |
+
for batch in tqdm(
|
178 |
+
list(partition_all(batch_size, prompts)),
|
179 |
+
desc="Processing batches",
|
180 |
+
unit="batch"
|
181 |
+
):
|
182 |
+
batch_results = llm.classify(batch)
|
183 |
+
all_results.append(batch_results)
|
184 |
+
|
185 |
+
# Flatten results
|
186 |
+
outputs = list(concat(all_results))
|
187 |
+
|
188 |
+
# Extract labels and probabilities
|
189 |
+
logger.info("Extracting predictions...")
|
190 |
+
labels_and_probs = [get_top_label(output, id2label) for output in outputs]
|
191 |
+
|
192 |
+
# Add results to dataset
|
193 |
+
dataset = dataset.add_column("label", [label for label, _ in labels_and_probs])
|
194 |
+
dataset = dataset.add_column("prob", [prob for _, prob in labels_and_probs])
|
195 |
+
|
196 |
+
# Push to hub
|
197 |
+
logger.info(f"Pushing results to: {output_dataset_hub_id}")
|
198 |
+
dataset.push_to_hub(output_dataset_hub_id, token=HF_TOKEN)
|
199 |
+
logger.info("✅ Classification complete!")
|
200 |
+
|
201 |
+
|
202 |
+
if __name__ == "__main__":
|
203 |
+
if len(sys.argv) > 1:
|
204 |
+
parser = argparse.ArgumentParser(
|
205 |
+
description="Classify text data using vLLM and save results to Hugging Face Hub",
|
206 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
207 |
+
epilog="""
|
208 |
+
Examples:
|
209 |
+
# Basic usage
|
210 |
+
uv run classify-dataset.py model/name input-dataset output-dataset
|
211 |
+
|
212 |
+
# With custom column and batch size
|
213 |
+
uv run classify-dataset.py model/name input-dataset output-dataset \\
|
214 |
+
--inference-column prompt \\
|
215 |
+
--batch-size 50000
|
216 |
+
|
217 |
+
# Using environment variable for token
|
218 |
+
HF_TOKEN=hf_xxx uv run classify-dataset.py model/name input-dataset output-dataset
|
219 |
+
"""
|
220 |
+
)
|
221 |
+
|
222 |
+
parser.add_argument(
|
223 |
+
"hub_model_id",
|
224 |
+
help="Hugging Face model ID for classification (e.g., bert-base-uncased)"
|
225 |
+
)
|
226 |
+
parser.add_argument(
|
227 |
+
"src_dataset_hub_id",
|
228 |
+
help="Input dataset on Hugging Face Hub (e.g., username/dataset-name)"
|
229 |
+
)
|
230 |
+
parser.add_argument(
|
231 |
+
"output_dataset_hub_id",
|
232 |
+
help="Output dataset name on Hugging Face Hub"
|
233 |
+
)
|
234 |
+
parser.add_argument(
|
235 |
+
"--inference-column",
|
236 |
+
type=str,
|
237 |
+
default="text",
|
238 |
+
help="Column containing text to classify (default: text)"
|
239 |
+
)
|
240 |
+
parser.add_argument(
|
241 |
+
"--batch-size",
|
242 |
+
type=int,
|
243 |
+
default=10_000,
|
244 |
+
help="Batch size for inference (default: 10,000)"
|
245 |
+
)
|
246 |
+
parser.add_argument(
|
247 |
+
"--hf-token",
|
248 |
+
type=str,
|
249 |
+
help="Hugging Face token (can also use HF_TOKEN env var)"
|
250 |
+
)
|
251 |
+
|
252 |
+
args = parser.parse_args()
|
253 |
+
|
254 |
+
main(
|
255 |
+
hub_model_id=args.hub_model_id,
|
256 |
+
src_dataset_hub_id=args.src_dataset_hub_id,
|
257 |
+
output_dataset_hub_id=args.output_dataset_hub_id,
|
258 |
+
inference_column=args.inference_column,
|
259 |
+
batch_size=args.batch_size,
|
260 |
+
hf_token=args.hf_token,
|
261 |
+
)
|
262 |
+
else:
|
263 |
+
# Show HF Jobs example when run without arguments
|
264 |
+
print("""
|
265 |
+
vLLM Classification Script
|
266 |
+
=========================
|
267 |
+
|
268 |
+
This script requires arguments. For usage information:
|
269 |
+
uv run classify-dataset.py --help
|
270 |
+
|
271 |
+
Example HF Jobs command:
|
272 |
+
hfjobs run \\
|
273 |
+
--flavor l4x1 \\
|
274 |
+
--secret HF_TOKEN=\$(python -c "from huggingface_hub import HfFolder; print(HfFolder.get_token())") \\
|
275 |
+
vllm/vllm-openai:latest \\
|
276 |
+
/bin/bash -c '
|
277 |
+
uv run https://huggingface.co/datasets/uv-scripts/vllm/resolve/main/classify-dataset.py \\
|
278 |
+
davanstrien/ModernBERT-base-is-new-arxiv-dataset \\
|
279 |
+
username/input-dataset \\
|
280 |
+
username/output-dataset \\
|
281 |
+
--inference-column text \\
|
282 |
+
--batch-size 100000
|
283 |
+
' \\
|
284 |
+
--project vllm-classify \\
|
285 |
+
--name my-classification-job
|
286 |
+
""")
|