# /// script # requires-python = ">=3.11" # dependencies = [ # "datasets", # "huggingface-hub[hf_transfer]", # "pillow", # "vllm", # "tqdm", # "toolz", # "torch", # Added for CUDA check # ] # # /// """ Extract text from document images using RolmOCR with vLLM. This script processes images through the RolmOCR model to extract plain text content, ideal for general-purpose OCR tasks. Features: - Fast and efficient text extraction - General-purpose document OCR - Based on Qwen2.5-VL-7B architecture - Optimized for batch processing with vLLM """ import argparse import base64 import io import json import logging import os import sys from typing import Any, Dict, List, Union import torch from datasets import load_dataset from huggingface_hub import DatasetCard, login from PIL import Image from toolz import partition_all from tqdm.auto import tqdm from vllm import LLM, SamplingParams from datetime import datetime logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def check_cuda_availability(): """Check if CUDA is available and exit if not.""" if not torch.cuda.is_available(): logger.error("CUDA is not available. This script requires a GPU.") logger.error("Please run on a machine with a CUDA-capable GPU.") sys.exit(1) else: logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}") def make_ocr_message( image: Union[Image.Image, Dict[str, Any], str], prompt: str = "Return the plain text representation of this document as if you were reading it naturally.\n", ) -> List[Dict]: """Create chat message for OCR processing.""" # Convert to PIL Image if needed if isinstance(image, Image.Image): pil_img = image elif isinstance(image, dict) and "bytes" in image: pil_img = Image.open(io.BytesIO(image["bytes"])) elif isinstance(image, str): pil_img = Image.open(image) else: raise ValueError(f"Unsupported image type: {type(image)}") # Convert to base64 data URI buf = io.BytesIO() pil_img.save(buf, format="PNG") data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" # Return message in vLLM format return [ { "role": "user", "content": [ {"type": "image_url", "image_url": {"url": data_uri}}, {"type": "text", "text": prompt}, ], } ] def create_dataset_card( source_dataset: str, model: str, num_samples: int, processing_time: str, output_column: str, batch_size: int, max_model_len: int, max_tokens: int, gpu_memory_utilization: float, image_column: str = "image", split: str = "train", ) -> str: """Create a dataset card documenting the OCR process.""" model_name = model.split("/")[-1] return f"""--- viewer: false tags: - ocr - text-extraction - rolmocr - uv-script - generated --- # OCR Text Extraction using {model_name} This dataset contains extracted text from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using RolmOCR. ## Processing Details - **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) - **Model**: [{model}](https://huggingface.co/{model}) - **Number of Samples**: {num_samples:,} - **Processing Time**: {processing_time} - **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")} ### Configuration - **Image Column**: `{image_column}` - **Output Column**: `{output_column}` - **Dataset Split**: `{split}` - **Batch Size**: {batch_size} - **Max Model Length**: {max_model_len:,} tokens - **Max Output Tokens**: {max_tokens:,} - **GPU Memory Utilization**: {gpu_memory_utilization:.1%} ## Model Information RolmOCR is a fast, general-purpose OCR model based on Qwen2.5-VL-7B architecture. It extracts plain text from document images with high accuracy and efficiency. ## Dataset Structure The dataset contains all original columns plus: - `{output_column}`: The extracted text from each image - `inference_info`: JSON list tracking all OCR models applied to this dataset ## Usage ```python from datasets import load_dataset import json # Load the dataset dataset = load_dataset("{{output_dataset_id}}", split="{split}") # Access the extracted text for example in dataset: print(example["{output_column}"]) break # View all OCR models applied to this dataset inference_info = json.loads(dataset[0]["inference_info"]) for info in inference_info: print(f"Column: {{info['column_name']}} - Model: {{info['model_id']}}") ``` ## Reproduction This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) RolmOCR script: ```bash uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/rolm-ocr.py \\ {source_dataset} \\ \\ --image-column {image_column} \\ --batch-size {batch_size} \\ --max-model-len {max_model_len} \\ --max-tokens {max_tokens} \\ --gpu-memory-utilization {gpu_memory_utilization} ``` ## Performance - **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.1f} images/second - **GPU Configuration**: vLLM with {gpu_memory_utilization:.0%} GPU memory utilization Generated with 🤖 [UV Scripts](https://huggingface.co/uv-scripts) """ def main( input_dataset: str, output_dataset: str, image_column: str = "image", batch_size: int = 16, model: str = "reducto/RolmOCR", max_model_len: int = 16384, max_tokens: int = 8192, gpu_memory_utilization: float = 0.8, hf_token: str = None, split: str = "train", max_samples: int = None, private: bool = False, output_column: str = None, shuffle: bool = False, seed: int = 42, ): """Process images from HF dataset through OCR model.""" # Check CUDA availability first check_cuda_availability() # Track processing start time start_time = datetime.now() # Enable HF_TRANSFER for faster downloads os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" # Login to HF if token provided HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") if HF_TOKEN: login(token=HF_TOKEN) # Load dataset logger.info(f"Loading dataset: {input_dataset}") dataset = load_dataset(input_dataset, split=split) # Set output column name dynamically if not provided if output_column is None: # Extract model name from path (e.g., "reducto/RolmOCR" -> "rolmocr") model_name = model.split("/")[-1].lower().replace("-", "_") output_column = f"{model_name}_text" logger.info(f"Using dynamic output column name: {output_column}") # Validate image column if image_column not in dataset.column_names: raise ValueError( f"Column '{image_column}' not found. Available: {dataset.column_names}" ) # Shuffle if requested if shuffle: logger.info(f"Shuffling dataset with seed {seed}") dataset = dataset.shuffle(seed=seed) # Limit samples if requested if max_samples: dataset = dataset.select(range(min(max_samples, len(dataset)))) logger.info(f"Limited to {len(dataset)} samples") # Initialize vLLM logger.info(f"Initializing vLLM with model: {model}") llm = LLM( model=model, trust_remote_code=True, max_model_len=max_model_len, gpu_memory_utilization=gpu_memory_utilization, limit_mm_per_prompt={"image": 1}, ) sampling_params = SamplingParams( temperature=0.0, # Deterministic for OCR max_tokens=max_tokens, ) # Process images in batches all_text = [] logger.info(f"Processing {len(dataset)} images in batches of {batch_size}") # Process in batches to avoid memory issues for batch_indices in tqdm( partition_all(batch_size, range(len(dataset))), total=(len(dataset) + batch_size - 1) // batch_size, desc="OCR processing", ): batch_indices = list(batch_indices) batch_images = [dataset[i][image_column] for i in batch_indices] try: # Create messages for batch batch_messages = [make_ocr_message(img) for img in batch_images] # Process with vLLM outputs = llm.chat(batch_messages, sampling_params) # Extract text from outputs for output in outputs: text = output.outputs[0].text.strip() all_text.append(text) except Exception as e: logger.error(f"Error processing batch: {e}") # Add error placeholders for failed batch all_text.extend(["[OCR FAILED]"] * len(batch_images)) # Add text column to dataset logger.info(f"Adding {output_column} column to dataset") dataset = dataset.add_column(output_column, all_text) # Handle inference_info tracking logger.info("Updating inference_info...") # Check for existing inference_info if "inference_info" in dataset.column_names: # Parse existing info from first row (all rows have same info) try: existing_info = json.loads(dataset[0]["inference_info"]) if not isinstance(existing_info, list): existing_info = [existing_info] # Convert old format to list except (json.JSONDecodeError, TypeError): existing_info = [] # Remove old column to update it dataset = dataset.remove_columns(["inference_info"]) else: existing_info = [] # Add new inference info new_info = { "column_name": output_column, "model_id": model, "processing_date": datetime.now().isoformat(), "batch_size": batch_size, "max_tokens": max_tokens, "gpu_memory_utilization": gpu_memory_utilization, "max_model_len": max_model_len, "script": "rolm-ocr.py", "script_version": "1.0.0", "script_url": "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/rolm-ocr.py" } existing_info.append(new_info) # Add updated inference_info column info_json = json.dumps(existing_info, ensure_ascii=False) dataset = dataset.add_column("inference_info", [info_json] * len(dataset)) # Push to hub logger.info(f"Pushing to {output_dataset}") dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN) # Calculate processing time end_time = datetime.now() processing_duration = end_time - start_time processing_time = f"{processing_duration.total_seconds() / 60:.1f} minutes" # Create and push dataset card logger.info("Creating dataset card...") card_content = create_dataset_card( source_dataset=input_dataset, model=model, num_samples=len(dataset), processing_time=processing_time, output_column=output_column, batch_size=batch_size, max_model_len=max_model_len, max_tokens=max_tokens, gpu_memory_utilization=gpu_memory_utilization, image_column=image_column, split=split, ) card = DatasetCard(card_content) card.push_to_hub(output_dataset, token=HF_TOKEN) logger.info("✅ Dataset card created and pushed!") logger.info("✅ OCR conversion complete!") logger.info( f"Dataset available at: https://huggingface.co/datasets/{output_dataset}" ) if __name__ == "__main__": # Show example usage if no arguments if len(sys.argv) == 1: print("=" * 80) print("RolmOCR Document Text Extraction") print("=" * 80) print("\nThis script extracts plain text from document images using") print("the RolmOCR model with vLLM acceleration.") print("\nFeatures:") print("- Fast and efficient text extraction") print("- General-purpose document OCR") print("- Based on Qwen2.5-VL-7B architecture") print("- Optimized for batch processing") print("\nExample usage:") print("\n1. Basic OCR conversion:") print(" uv run rolm-ocr.py document-images extracted-text") print("\n2. With custom settings:") print(" uv run rolm-ocr.py scanned-docs ocr-output \\") print(" --image-column page \\") print(" --batch-size 8 \\") print(" --gpu-memory-utilization 0.9") print("\n3. Process a subset for testing:") print(" uv run rolm-ocr.py large-dataset test-output --max-samples 10") print("\n4. Random sample from ordered dataset:") print(" uv run rolm-ocr.py ordered-dataset random-test --max-samples 50 --shuffle") print("\n5. Running on HF Jobs:") print(" hf jobs uv run --flavor l4x1 \\") print(" -e HF_TOKEN=$(python3 -c \"from huggingface_hub import get_token; print(get_token())\") \\") print( " https://huggingface.co/datasets/uv-scripts/ocr/raw/main/rolm-ocr.py \\" ) print(" your-document-dataset \\") print(" your-text-output") print("\n" + "=" * 80) print("\nFor full help, run: uv run rolm-ocr.py --help") sys.exit(0) parser = argparse.ArgumentParser( description="OCR images to text using RolmOCR", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=""" Examples: # Basic usage uv run rolm-ocr.py my-images-dataset ocr-results # With specific image column uv run rolm-ocr.py documents extracted-text --image-column scan # Process subset for testing uv run rolm-ocr.py large-dataset test-output --max-samples 100 # Random sample of 100 images uv run rolm-ocr.py ordered-dataset random-sample --max-samples 100 --shuffle # Custom output column name (default: rolmocr_text) uv run rolm-ocr.py images texts --output-column ocr_text """, ) parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub") parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub") parser.add_argument( "--image-column", default="image", help="Column containing images (default: image)", ) parser.add_argument( "--batch-size", type=int, default=16, help="Batch size for processing (default: 16)", ) parser.add_argument( "--model", default="reducto/RolmOCR", help="Model to use (default: reducto/RolmOCR)", ) parser.add_argument( "--max-model-len", type=int, default=16384, help="Maximum model context length (default: 16384)", ) parser.add_argument( "--max-tokens", type=int, default=8192, help="Maximum tokens to generate (default: 8192)", ) parser.add_argument( "--gpu-memory-utilization", type=float, default=0.8, help="GPU memory utilization (default: 0.8)", ) parser.add_argument("--hf-token", help="Hugging Face API token") parser.add_argument( "--split", default="train", help="Dataset split to use (default: train)" ) parser.add_argument( "--max-samples", type=int, help="Maximum number of samples to process (for testing)", ) parser.add_argument( "--private", action="store_true", help="Make output dataset private" ) parser.add_argument( "--output-column", default=None, help="Name of the output column for extracted text (default: auto-generated from model name)", ) parser.add_argument( "--shuffle", action="store_true", help="Shuffle the dataset before processing (useful for random sampling)", ) parser.add_argument( "--seed", type=int, default=42, help="Random seed for shuffling (default: 42)", ) args = parser.parse_args() main( input_dataset=args.input_dataset, output_dataset=args.output_dataset, image_column=args.image_column, batch_size=args.batch_size, model=args.model, max_model_len=args.max_model_len, max_tokens=args.max_tokens, gpu_memory_utilization=args.gpu_memory_utilization, hf_token=args.hf_token, split=args.split, max_samples=args.max_samples, private=args.private, output_column=args.output_column, shuffle=args.shuffle, seed=args.seed, )