# /// script # requires-python = ">=3.11" # dependencies = [ # "datasets", # "huggingface-hub[hf_transfer]", # "pillow", # "vllm", # "tqdm", # "toolz", # "torch", # Added for CUDA check # ] # # /// """ Convert document images to markdown using Nanonets-OCR-s with vLLM. This script processes images through the Nanonets-OCR-s model to extract text and structure as markdown, ideal for document understanding tasks. Features: - LaTeX equation recognition - Table extraction and formatting - Document structure preservation - Signature and watermark detection """ import argparse import base64 import io import json import logging import os import sys from typing import Any, Dict, List, Union import torch from datasets import load_dataset from huggingface_hub import DatasetCard, login from PIL import Image from toolz import partition_all from tqdm.auto import tqdm from vllm import LLM, SamplingParams from datetime import datetime logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def check_cuda_availability(): """Check if CUDA is available and exit if not.""" if not torch.cuda.is_available(): logger.error("CUDA is not available. This script requires a GPU.") logger.error("Please run on a machine with a CUDA-capable GPU.") sys.exit(1) else: logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}") def make_ocr_message( image: Union[Image.Image, Dict[str, Any], str], prompt: str = "Extract the text from the above document as if you were reading it naturally. Return the tables in html format. Return the equations in LaTeX representation. If there is an image in the document and image caption is not present, add a small description of the image inside the tag; otherwise, add the image caption inside . Watermarks should be wrapped in brackets. Ex: OFFICIAL COPY. Page numbers should be wrapped in brackets. Ex: 14 or 9/22. Prefer using ☐ and ☑ for check boxes.", ) -> List[Dict]: """Create chat message for OCR processing.""" # Convert to PIL Image if needed if isinstance(image, Image.Image): pil_img = image elif isinstance(image, dict) and "bytes" in image: pil_img = Image.open(io.BytesIO(image["bytes"])) elif isinstance(image, str): pil_img = Image.open(image) else: raise ValueError(f"Unsupported image type: {type(image)}") # Convert to base64 data URI buf = io.BytesIO() pil_img.save(buf, format="PNG") data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" # Return message in vLLM format return [ { "role": "user", "content": [ {"type": "image_url", "image_url": {"url": data_uri}}, {"type": "text", "text": prompt}, ], } ] def create_dataset_card( source_dataset: str, model: str, num_samples: int, processing_time: str, batch_size: int, max_model_len: int, max_tokens: int, gpu_memory_utilization: float, image_column: str = "image", split: str = "train", ) -> str: """Create a dataset card documenting the OCR process.""" model_name = model.split("/")[-1] return f"""--- viewer: false tags: - ocr - document-processing - nanonets - markdown - uv-script - generated --- # Document OCR using {model_name} This dataset contains markdown-formatted OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using Nanonets-OCR-s. ## Processing Details - **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) - **Model**: [{model}](https://huggingface.co/{model}) - **Number of Samples**: {num_samples:,} - **Processing Time**: {processing_time} - **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")} ### Configuration - **Image Column**: `{image_column}` - **Output Column**: `markdown` - **Dataset Split**: `{split}` - **Batch Size**: {batch_size} - **Max Model Length**: {max_model_len:,} tokens - **Max Output Tokens**: {max_tokens:,} - **GPU Memory Utilization**: {gpu_memory_utilization:.1%} ## Model Information Nanonets-OCR-s is a state-of-the-art document OCR model that excels at: - 📐 **LaTeX equations** - Mathematical formulas preserved in LaTeX format - 📊 **Tables** - Extracted and formatted as HTML - 📝 **Document structure** - Headers, lists, and formatting maintained - 🖼️ **Images** - Captions and descriptions included in `` tags - ☑️ **Forms** - Checkboxes rendered as ☐/☑ - 🔖 **Watermarks** - Wrapped in `` tags - 📄 **Page numbers** - Wrapped in `` tags ## Dataset Structure The dataset contains all original columns plus: - `markdown`: The extracted text in markdown format with preserved structure - `inference_info`: JSON list tracking all OCR models applied to this dataset ## Usage ```python from datasets import load_dataset import json # Load the dataset dataset = load_dataset("{{output_dataset_id}}", split="{split}") # Access the markdown text for example in dataset: print(example["markdown"]) break # View all OCR models applied to this dataset inference_info = json.loads(dataset[0]["inference_info"]) for info in inference_info: print(f"Column: {{info['column_name']}} - Model: {{info['model_id']}}") ``` ## Reproduction This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) Nanonets OCR script: ```bash uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \\ {source_dataset} \\ \\ --image-column {image_column} \\ --batch-size {batch_size} \\ --max-model-len {max_model_len} \\ --max-tokens {max_tokens} \\ --gpu-memory-utilization {gpu_memory_utilization} ``` ## Performance - **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.1f} images/second - **GPU Configuration**: vLLM with {gpu_memory_utilization:.0%} GPU memory utilization Generated with 🤖 [UV Scripts](https://huggingface.co/uv-scripts) """ def main( input_dataset: str, output_dataset: str, image_column: str = "image", batch_size: int = 32, model: str = "nanonets/Nanonets-OCR-s", max_model_len: int = 8192, max_tokens: int = 4096, gpu_memory_utilization: float = 0.8, hf_token: str = None, split: str = "train", max_samples: int = None, private: bool = False, shuffle: bool = False, seed: int = 42, ): """Process images from HF dataset through OCR model.""" # Check CUDA availability first check_cuda_availability() # Track processing start time start_time = datetime.now() # Enable HF_TRANSFER for faster downloads os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" # Login to HF if token provided HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") if HF_TOKEN: login(token=HF_TOKEN) # Load dataset logger.info(f"Loading dataset: {input_dataset}") dataset = load_dataset(input_dataset, split=split) # Validate image column if image_column not in dataset.column_names: raise ValueError( f"Column '{image_column}' not found. Available: {dataset.column_names}" ) # Shuffle if requested if shuffle: logger.info(f"Shuffling dataset with seed {seed}") dataset = dataset.shuffle(seed=seed) # Limit samples if requested if max_samples: dataset = dataset.select(range(min(max_samples, len(dataset)))) logger.info(f"Limited to {len(dataset)} samples") # Initialize vLLM logger.info(f"Initializing vLLM with model: {model}") llm = LLM( model=model, trust_remote_code=True, max_model_len=max_model_len, gpu_memory_utilization=gpu_memory_utilization, limit_mm_per_prompt={"image": 1}, ) sampling_params = SamplingParams( temperature=0.0, # Deterministic for OCR max_tokens=max_tokens, ) # Process images in batches all_markdown = [] logger.info(f"Processing {len(dataset)} images in batches of {batch_size}") # Process in batches to avoid memory issues for batch_indices in tqdm( partition_all(batch_size, range(len(dataset))), total=(len(dataset) + batch_size - 1) // batch_size, desc="OCR processing", ): batch_indices = list(batch_indices) batch_images = [dataset[i][image_column] for i in batch_indices] try: # Create messages for batch batch_messages = [make_ocr_message(img) for img in batch_images] # Process with vLLM outputs = llm.chat(batch_messages, sampling_params) # Extract markdown from outputs for output in outputs: markdown_text = output.outputs[0].text.strip() all_markdown.append(markdown_text) except Exception as e: logger.error(f"Error processing batch: {e}") # Add error placeholders for failed batch all_markdown.extend(["[OCR FAILED]"] * len(batch_images)) # Add markdown column to dataset logger.info("Adding markdown column to dataset") dataset = dataset.add_column("markdown", all_markdown) # Handle inference_info tracking logger.info("Updating inference_info...") # Check for existing inference_info if "inference_info" in dataset.column_names: # Parse existing info from first row (all rows have same info) try: existing_info = json.loads(dataset[0]["inference_info"]) if not isinstance(existing_info, list): existing_info = [existing_info] # Convert old format to list except (json.JSONDecodeError, TypeError): existing_info = [] # Remove old column to update it dataset = dataset.remove_columns(["inference_info"]) else: existing_info = [] # Add new inference info new_info = { "column_name": "markdown", "model_id": model, "processing_date": datetime.now().isoformat(), "batch_size": batch_size, "max_tokens": max_tokens, "gpu_memory_utilization": gpu_memory_utilization, "max_model_len": max_model_len, "script": "nanonets-ocr.py", "script_version": "1.0.0", "script_url": "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py" } existing_info.append(new_info) # Add updated inference_info column info_json = json.dumps(existing_info, ensure_ascii=False) dataset = dataset.add_column("inference_info", [info_json] * len(dataset)) # Push to hub logger.info(f"Pushing to {output_dataset}") dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN) # Calculate processing time end_time = datetime.now() processing_duration = end_time - start_time processing_time = f"{processing_duration.total_seconds() / 60:.1f} minutes" # Create and push dataset card logger.info("Creating dataset card...") card_content = create_dataset_card( source_dataset=input_dataset, model=model, num_samples=len(dataset), processing_time=processing_time, batch_size=batch_size, max_model_len=max_model_len, max_tokens=max_tokens, gpu_memory_utilization=gpu_memory_utilization, image_column=image_column, split=split, ) card = DatasetCard(card_content) card.push_to_hub(output_dataset, token=HF_TOKEN) logger.info("✅ Dataset card created and pushed!") logger.info("✅ OCR conversion complete!") logger.info( f"Dataset available at: https://huggingface.co/datasets/{output_dataset}" ) if __name__ == "__main__": # Show example usage if no arguments if len(sys.argv) == 1: print("=" * 80) print("Nanonets OCR to Markdown Converter") print("=" * 80) print("\nThis script converts document images to structured markdown using") print("the Nanonets-OCR-s model with vLLM acceleration.") print("\nFeatures:") print("- LaTeX equation recognition") print("- Table extraction and formatting") print("- Document structure preservation") print("- Signature and watermark detection") print("\nExample usage:") print("\n1. Basic OCR conversion:") print(" uv run nanonets-ocr.py document-images markdown-docs") print("\n2. With custom settings:") print(" uv run nanonets-ocr.py scanned-pdfs extracted-text \\") print(" --image-column page \\") print(" --batch-size 16 \\") print(" --gpu-memory-utilization 0.8") print("\n3. Process a subset for testing:") print(" uv run nanonets-ocr.py large-dataset test-output --max-samples 10") print("\n4. Random sample from ordered dataset:") print(" uv run nanonets-ocr.py ordered-dataset random-test --max-samples 50 --shuffle") print("\n5. Running on HF Jobs:") print(" hfjobs run \\") print(" --flavor l4x1 \\") print(" --secret HF_TOKEN=... \\") print( " uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \\" ) print(" your-document-dataset \\") print(" your-markdown-output") print("\n" + "=" * 80) print("\nFor full help, run: uv run nanonets-ocr.py --help") sys.exit(0) parser = argparse.ArgumentParser( description="OCR images to markdown using Nanonets-OCR-s", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=""" Examples: # Basic usage uv run nanonets-ocr.py my-images-dataset ocr-results # With specific image column uv run nanonets-ocr.py documents extracted-text --image-column scan # Process subset for testing uv run nanonets-ocr.py large-dataset test-output --max-samples 100 # Random sample from ordered dataset uv run nanonets-ocr.py ordered-dataset random-sample --max-samples 50 --shuffle """, ) parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub") parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub") parser.add_argument( "--image-column", default="image", help="Column containing images (default: image)", ) parser.add_argument( "--batch-size", type=int, default=32, help="Batch size for processing (default: 32)", ) parser.add_argument( "--model", default="nanonets/Nanonets-OCR-s", help="Model to use (default: nanonets/Nanonets-OCR-s)", ) parser.add_argument( "--max-model-len", type=int, default=8192, help="Maximum model context length (default: 8192)", ) parser.add_argument( "--max-tokens", type=int, default=4096, help="Maximum tokens to generate (default: 4096)", ) parser.add_argument( "--gpu-memory-utilization", type=float, default=0.8, help="GPU memory utilization (default: 0.8)", ) parser.add_argument("--hf-token", help="Hugging Face API token") parser.add_argument( "--split", default="train", help="Dataset split to use (default: train)" ) parser.add_argument( "--max-samples", type=int, help="Maximum number of samples to process (for testing)", ) parser.add_argument( "--private", action="store_true", help="Make output dataset private" ) parser.add_argument( "--shuffle", action="store_true", help="Shuffle the dataset before processing (useful for random sampling)", ) parser.add_argument( "--seed", type=int, default=42, help="Random seed for shuffling (default: 42)", ) args = parser.parse_args() main( input_dataset=args.input_dataset, output_dataset=args.output_dataset, image_column=args.image_column, batch_size=args.batch_size, model=args.model, max_model_len=args.max_model_len, max_tokens=args.max_tokens, gpu_memory_utilization=args.gpu_memory_utilization, hf_token=args.hf_token, split=args.split, max_samples=args.max_samples, private=args.private, shuffle=args.shuffle, seed=args.seed, )