--- viewer: false tags: [uv-script, ocr, vision-language-model, document-processing] --- # OCR UV Scripts > Part of [uv-scripts](https://huggingface.co/uv-scripts) - ready-to-run ML tools powered by UV Ready-to-run OCR scripts that work with `uv run` - no setup required! ## 🚀 Quick Start with HuggingFace Jobs Run OCR on any dataset without needing your own GPU: ```bash # Quick test with 10 samples hf jobs uv run --flavor l4x1 \ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \ your-input-dataset your-output-dataset \ --max-samples 10 ``` That's it! The script will: - ✅ Process first 10 images from your dataset - ✅ Add OCR results as a new `markdown` column - ✅ Push the results to a new dataset - 📊 View results at: `https://huggingface.co/datasets/[your-output-dataset]` ## 📋 Available Scripts ### RolmOCR (`rolm-ocr.py`) Fast general-purpose OCR using [reducto/RolmOCR](https://huggingface.co/reducto/RolmOCR) based on Qwen2.5-VL-7B: - 🚀 **Fast extraction** - Optimized for speed and efficiency - 📄 **Plain text output** - Clean, natural text representation - 💪 **General-purpose** - Works well on various document types - 🔥 **Large context** - Handles up to 16K tokens - ⚡ **Batch optimized** - Efficient processing with vLLM ### Nanonets OCR (`nanonets-ocr.py`) State-of-the-art document OCR using [nanonets/Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s) that handles: - 📐 **LaTeX equations** - Mathematical formulas preserved - 📊 **Tables** - Extracted as HTML format - 📝 **Document structure** - Headers, lists, formatting maintained - 🖼️ **Images** - Captions and descriptions included - ☑️ **Forms** - Checkboxes rendered as ☐/☑ ### SmolDocling (`smoldocling-ocr.py`) Ultra-compact document understanding using [ds4sd/SmolDocling-256M-preview](https://huggingface.co/ds4sd/SmolDocling-256M-preview) with only 256M parameters: - 🏷️ **DocTags format** - Efficient XML-like representation - 💻 **Code blocks** - Preserves indentation and syntax - 🔢 **Formulas** - Mathematical expressions with layout - 📊 **Tables & charts** - Structured data extraction - 📐 **Layout preservation** - Bounding boxes and spatial info - ⚡ **Ultra-fast** - Tiny model size for quick inference ### NuMarkdown (`numarkdown-ocr.py`) Advanced reasoning-based OCR using [numind/NuMarkdown-8B-Thinking](https://huggingface.co/numind/NuMarkdown-8B-Thinking) that analyzes documents before converting to markdown: - 🧠 **Reasoning Process** - Thinks through document layout before generation - 📊 **Complex Tables** - Superior table extraction and formatting - 📐 **Mathematical Formulas** - Accurate LaTeX/math notation preservation - 🔍 **Multi-column Layouts** - Handles complex document structures - ✨ **Thinking Traces** - Optional inclusion of reasoning process with `--include-thinking` ## 🆕 New Features ### Multi-Model Comparison Support All scripts now include `inference_info` tracking for comparing multiple OCR models: ```bash # First model uv run rolm-ocr.py my-dataset my-dataset --max-samples 100 # Second model (appends to same dataset) uv run nanonets-ocr.py my-dataset my-dataset --max-samples 100 # View all models used python -c "import json; from datasets import load_dataset; ds = load_dataset('my-dataset'); print(json.loads(ds[0]['inference_info']))" ``` ### Random Sampling Get representative samples with the new `--shuffle` flag: ```bash # Random 50 samples instead of first 50 uv run rolm-ocr.py ordered-dataset output --max-samples 50 --shuffle # Reproducible random sampling uv run nanonets-ocr.py dataset output --max-samples 100 --shuffle --seed 42 ``` ### Automatic Dataset Cards Every OCR run now generates comprehensive dataset documentation including: - Model configuration and parameters - Processing statistics - Column descriptions - Reproduction instructions ## 💻 Usage Examples ### Run on HuggingFace Jobs (Recommended) No GPU? No problem! Run on HF infrastructure: ```bash # Basic OCR job hf jobs uv run --flavor l4x1 \ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \ your-input-dataset your-output-dataset # Real example with UFO dataset 🛸 hf jobs uv run \ --flavor a10g-large \ --image vllm/vllm-openai:latest \ -s HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \ davanstrien/ufo-ColPali \ your-username/ufo-ocr \ --image-column image \ --max-model-len 16384 \ --batch-size 128 # NuMarkdown with reasoning traces for complex documents hf jobs uv run \ --image vllm/vllm-openai:latest \ --flavor l4x4 \ -s HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py \ your-input-dataset your-output-dataset \ --max-samples 50 \ --include-thinking \ --shuffle # Private dataset with custom settings hf jobs uv run --flavor l40sx1 \ -s HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \ private-input private-output \ --private \ --batch-size 32 ``` ### Python API ```python from huggingface_hub import run_uv_job job = run_uv_job( "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py", args=["input-dataset", "output-dataset", "--batch-size", "16"], flavor="l4x1" ) ``` ### Run Locally (Requires GPU) ```bash # Clone and run git clone https://huggingface.co/datasets/uv-scripts/ocr cd ocr uv run nanonets-ocr.py input-dataset output-dataset # Or run directly from URL uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \ input-dataset output-dataset # RolmOCR for fast text extraction uv run rolm-ocr.py documents extracted-text uv run rolm-ocr.py images texts --shuffle --max-samples 100 # Random sample ``` ## 📁 Works With Any HuggingFace dataset containing images - documents, forms, receipts, books, handwriting. ## 🎛️ Configuration Options ### Common Options (All Scripts) | Option | Default | Description | | -------------------------- | ------- | ----------------------------- | | `--image-column` | `image` | Column containing images | | `--batch-size` | `32`/`16`* | Images processed together | | `--max-model-len` | `8192`/`16384`** | Max context length | | `--max-tokens` | `4096`/`8192`** | Max output tokens | | `--gpu-memory-utilization` | `0.8` | GPU memory usage (0.0-1.0) | | `--split` | `train` | Dataset split to process | | `--max-samples` | None | Limit samples (for testing) | | `--private` | False | Make output dataset private | | `--shuffle` | False | Shuffle dataset before processing | | `--seed` | `42` | Random seed for shuffling | *RolmOCR uses batch size 16 **RolmOCR uses 16384/8192 ### RolmOCR Specific - Output column is auto-generated from model name (e.g., `rolmocr_text`) - Use `--output-column` to override the default name 💡 **Performance tip**: Increase batch size for faster processing (e.g., `--batch-size 128` for A10G GPUs) More OCR VLM Scripts coming soon! Stay tuned for updates!