Datasets:
Tasks:
Text Ranking
Formats:
json
Sub-tasks:
document-retrieval
Languages:
English
Size:
1K - 10K
License:
import os | |
import json | |
import csv | |
import datasets | |
_DESCRIPTION = """ | |
MixBench is a benchmark for mixed-modality retrieval across text, image, and image+text corpora. | |
""" | |
_HOMEPAGE = "https://huggingface.co/datasets/andy0207/mixbench" | |
class MixBench(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name=name, version=datasets.Version("1.0.0"), description=f"MixBench subset: {name}") | |
for name in ["MSCOCO", "Google_WIT", "VisualNews", "OVEN"] | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
homepage=_HOMEPAGE, | |
features=datasets.Features({ | |
"query_id": datasets.Value("string"), | |
"corpus_id": datasets.Value("string"), | |
"text": datasets.Value("string"), | |
"image": datasets.Value("string"), | |
"score": datasets.Value("int32"), | |
}) | |
) | |
def _split_generators(self, dl_manager): | |
# 确保这个方法存在且正确实现 | |
subset_dir = os.path.join(dl_manager.manual_dir or dl_manager._base_path, self.config.name) | |
return [ | |
datasets.SplitGenerator( | |
name="query", | |
gen_kwargs={"path": os.path.join(subset_dir, "queries.jsonl"), "split": "query"}, | |
), | |
datasets.SplitGenerator( | |
name="corpus", | |
gen_kwargs={"path": os.path.join(subset_dir, "corpus.jsonl"), "split": "corpus"}, | |
), | |
datasets.SplitGenerator( | |
name="mixed_corpus", | |
gen_kwargs={"path": os.path.join(subset_dir, "mixed_corpus.jsonl"), "split": "mixed_corpus"}, | |
), | |
datasets.SplitGenerator( | |
name="qrel", | |
gen_kwargs={"path": os.path.join(subset_dir, "qrels", "qrels.tsv"), "split": "qrel"}, | |
), | |
] | |
def _generate_examples(self, path, split): | |
if split == "query": | |
with open(path, encoding="utf-8") as f: | |
for idx, line in enumerate(f): | |
item = json.loads(line) | |
yield idx, { | |
"query_id": item.get("query_id", ""), | |
"corpus_id": "", | |
"text": item.get("text", ""), | |
"image": item.get("image", ""), | |
"score": 0, | |
} | |
elif split == "corpus" or split == "mixed_corpus": | |
with open(path, encoding="utf-8") as f: | |
for idx, line in enumerate(f): | |
item = json.loads(line) | |
yield idx, { | |
"query_id": "", | |
"corpus_id": item.get("corpus_id", ""), | |
"text": item.get("text", ""), | |
"image": item.get("image", ""), | |
"score": 0, | |
} | |
elif split == "qrel": | |
with open(path, encoding="utf-8") as f: | |
reader = csv.DictReader(f, delimiter="\t") | |
for idx, row in enumerate(reader): | |
yield idx, { | |
"query_id": row["query_id"], | |
"corpus_id": row["corpus_id"], | |
"text": "", | |
"image": "", | |
"score": int(row["score"]) | |
} |