#!/usr/bin/env python3 """ Create a metadata table from GitHub Python file URLs. This script processes the file URLs from python_files.txt and creates a tabular CSV file with repository metadata including owner, name, file path, and URLs. """ import os import re import csv import pandas as pd from collections import Counter from urllib.parse import urlparse from tqdm import tqdm def parse_github_url(url): """ Parse a GitHub URL to extract repository owner, name, and file path. Handles both raw.githubusercontent.com and github.com URLs. Args: url (str): GitHub URL Returns: dict: Dictionary with repo_owner, repo_name, file_path, repo_url """ url = url.strip() # Initialize default values result = { "repo_owner": "unknown", "repo_name": "unknown", "file_path": "", "file_url": url, "repo_url": "" } try: # Parse URL to get components parsed = urlparse(url) path_parts = parsed.path.strip('/').split('/') # Handle raw.githubusercontent.com URLs # Format: https://raw.githubusercontent.com/owner/repo/branch/path/to/file.py if 'raw.githubusercontent.com' in url: if len(path_parts) >= 3: result["repo_owner"] = path_parts[0] result["repo_name"] = path_parts[1] # Skip branch (path_parts[2]) and get the rest as file path result["file_path"] = '/'.join(path_parts[3:]) result["repo_url"] = f"https://github.com/{path_parts[0]}/{path_parts[1]}" # Handle github.com URLs # Format: https://github.com/owner/repo/blob/branch/path/to/file.py elif 'github.com' in url: if len(path_parts) >= 4 and path_parts[2] == 'blob': result["repo_owner"] = path_parts[0] result["repo_name"] = path_parts[1] # Skip 'blob' and branch, get the rest as file path result["file_path"] = '/'.join(path_parts[4:]) result["repo_url"] = f"https://github.com/{path_parts[0]}/{path_parts[1]}" return result except Exception as e: print(f"Error parsing URL {url}: {e}") return result def process_file_urls(input_file, output_file): """ Process GitHub file URLs and create a metadata CSV file. Args: input_file (str): Path to the file containing GitHub URLs output_file (str): Path to the output CSV file """ print(f"Processing URLs from {input_file}...") # Read file URLs with open(input_file, 'r', encoding='utf-8') as f: urls = [line.strip() for line in f if line.strip()] # Parse each URL metadata = [] for url in tqdm(urls, desc="Parsing URLs"): metadata.append(parse_github_url(url)) # Convert to DataFrame df = pd.DataFrame(metadata) # Save to CSV # Use minimal quoting to remain compatible with the standard csv module df.to_csv(output_file, index=False, quoting=csv.QUOTE_MINIMAL) print(f"Metadata saved to {output_file}") # Print statistics unique_repos = df[['repo_owner', 'repo_name']].drop_duplicates() unique_owners = df['repo_owner'].nunique() print("\n=== Dataset Statistics ===") print(f"Total files: {len(df)}") print(f"Unique repositories: {len(unique_repos)}") print(f"Unique repository owners: {unique_owners}") # Top repositories by file count repo_counts = Counter(zip(df['repo_owner'], df['repo_name'])) print("\nTop 10 repositories by file count:") for (owner, repo), count in repo_counts.most_common(10): print(f" {owner}/{repo}: {count} files") # File extensions extensions = Counter([os.path.splitext(path)[1] for path in df['file_path'] if path]) print("\nFile extensions:") for ext, count in extensions.most_common(5): print(f" {ext or 'No extension'}: {count} files") # Repository owners with most repositories owner_repo_counts = Counter(df['repo_owner']) print("\nTop 5 repository owners:") for owner, count in owner_repo_counts.most_common(5): print(f" {owner}: {count} files") if __name__ == "__main__": input_file = "python_files.txt" output_file = "github_python_metadata.csv" # Check if input file exists if not os.path.exists(input_file): print(f"Error: Input file {input_file} not found.") print("Please make sure the file exists in the current directory.") exit(1) process_file_urls(input_file, output_file)