|
|
|
""" |
|
Create a metadata table from GitHub Python file URLs. |
|
|
|
This script processes the file URLs from python_files.txt and creates a tabular |
|
CSV file with repository metadata including owner, name, file path, and URLs. |
|
""" |
|
|
|
import os |
|
import re |
|
import csv |
|
import pandas as pd |
|
from collections import Counter |
|
from urllib.parse import urlparse |
|
from tqdm import tqdm |
|
|
|
|
|
def parse_github_url(url): |
|
""" |
|
Parse a GitHub URL to extract repository owner, name, and file path. |
|
|
|
Handles both raw.githubusercontent.com and github.com URLs. |
|
|
|
Args: |
|
url (str): GitHub URL |
|
|
|
Returns: |
|
dict: Dictionary with repo_owner, repo_name, file_path, repo_url |
|
""" |
|
url = url.strip() |
|
|
|
|
|
result = { |
|
"repo_owner": "unknown", |
|
"repo_name": "unknown", |
|
"file_path": "", |
|
"file_url": url, |
|
"repo_url": "" |
|
} |
|
|
|
try: |
|
|
|
parsed = urlparse(url) |
|
path_parts = parsed.path.strip('/').split('/') |
|
|
|
|
|
|
|
if 'raw.githubusercontent.com' in url: |
|
if len(path_parts) >= 3: |
|
result["repo_owner"] = path_parts[0] |
|
result["repo_name"] = path_parts[1] |
|
|
|
result["file_path"] = '/'.join(path_parts[3:]) |
|
result["repo_url"] = f"https://github.com/{path_parts[0]}/{path_parts[1]}" |
|
|
|
|
|
|
|
elif 'github.com' in url: |
|
if len(path_parts) >= 4 and path_parts[2] == 'blob': |
|
result["repo_owner"] = path_parts[0] |
|
result["repo_name"] = path_parts[1] |
|
|
|
result["file_path"] = '/'.join(path_parts[4:]) |
|
result["repo_url"] = f"https://github.com/{path_parts[0]}/{path_parts[1]}" |
|
|
|
return result |
|
|
|
except Exception as e: |
|
print(f"Error parsing URL {url}: {e}") |
|
return result |
|
|
|
|
|
def process_file_urls(input_file, output_file): |
|
""" |
|
Process GitHub file URLs and create a metadata CSV file. |
|
|
|
Args: |
|
input_file (str): Path to the file containing GitHub URLs |
|
output_file (str): Path to the output CSV file |
|
""" |
|
print(f"Processing URLs from {input_file}...") |
|
|
|
|
|
with open(input_file, 'r', encoding='utf-8') as f: |
|
urls = [line.strip() for line in f if line.strip()] |
|
|
|
|
|
metadata = [] |
|
for url in tqdm(urls, desc="Parsing URLs"): |
|
metadata.append(parse_github_url(url)) |
|
|
|
|
|
df = pd.DataFrame(metadata) |
|
|
|
|
|
|
|
df.to_csv(output_file, index=False, quoting=csv.QUOTE_MINIMAL) |
|
print(f"Metadata saved to {output_file}") |
|
|
|
|
|
unique_repos = df[['repo_owner', 'repo_name']].drop_duplicates() |
|
unique_owners = df['repo_owner'].nunique() |
|
|
|
print("\n=== Dataset Statistics ===") |
|
print(f"Total files: {len(df)}") |
|
print(f"Unique repositories: {len(unique_repos)}") |
|
print(f"Unique repository owners: {unique_owners}") |
|
|
|
|
|
repo_counts = Counter(zip(df['repo_owner'], df['repo_name'])) |
|
print("\nTop 10 repositories by file count:") |
|
for (owner, repo), count in repo_counts.most_common(10): |
|
print(f" {owner}/{repo}: {count} files") |
|
|
|
|
|
extensions = Counter([os.path.splitext(path)[1] for path in df['file_path'] if path]) |
|
print("\nFile extensions:") |
|
for ext, count in extensions.most_common(5): |
|
print(f" {ext or 'No extension'}: {count} files") |
|
|
|
|
|
owner_repo_counts = Counter(df['repo_owner']) |
|
print("\nTop 5 repository owners:") |
|
for owner, count in owner_repo_counts.most_common(5): |
|
print(f" {owner}: {count} files") |
|
|
|
|
|
if __name__ == "__main__": |
|
input_file = "python_files.txt" |
|
output_file = "github_python_metadata.csv" |
|
|
|
|
|
if not os.path.exists(input_file): |
|
print(f"Error: Input file {input_file} not found.") |
|
print("Please make sure the file exists in the current directory.") |
|
exit(1) |
|
|
|
process_file_urls(input_file, output_file) |
|
|