Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 12,280 Bytes
94c1f58
 
840234c
 
 
 
 
 
 
 
 
 
94c1f58
840234c
fbb59ba
840234c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbb59ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bcbaba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04ebe30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab6200c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34d0a4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201349a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a3a352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14d8f40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f8b2fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
840234c
 
 
 
 
 
 
 
 
fbb59ba
 
 
 
 
 
 
 
8bcbaba
 
 
 
 
 
 
 
04ebe30
 
 
 
 
 
 
 
ab6200c
 
 
 
 
 
 
 
34d0a4e
 
 
 
 
 
 
 
201349a
 
 
 
 
 
 
 
9a3a352
 
 
 
 
 
 
 
14d8f40
 
 
 
 
 
 
 
3f8b2fb
 
 
 
 
 
 
 
94c1f58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
---
language:
- ar
- de
- en
- es
- ha
- pt
- ro
- ru
- uk
- zh
license: cc-by-4.0
dataset_info:
- config_name: arq
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  splits:
  - name: train
    num_bytes: 178401.95138168443
    num_examples: 901
  - name: dev
    num_bytes: 19159.729599227427
    num_examples: 100
  - name: test
    num_bytes: 182325.91774094536
    num_examples: 902
  download_size: 168878
  dataset_size: 379887.5987218572
- config_name: chn
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  splits:
  - name: train
    num_bytes: 523127.5866264265
    num_examples: 2642
  - name: dev
    num_bytes: 38319.45919845485
    num_examples: 200
  - name: test
    num_bytes: 534041.1027401083
    num_examples: 2642
  download_size: 776879
  dataset_size: 1095488.1485649897
- config_name: deu
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  splits:
  - name: train
    num_bytes: 515405.4155899274
    num_examples: 2603
  - name: dev
    num_bytes: 38319.45919845485
    num_examples: 200
  - name: test
    num_bytes: 526359.9665159886
    num_examples: 2604
  download_size: 900359
  dataset_size: 1080084.8413043707
- config_name: eng
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  splits:
  - name: train
    num_bytes: 548076.1392058851
    num_examples: 2768
  - name: dev
    num_bytes: 22225.286335103814
    num_examples: 116
  - name: test
    num_bytes: 559307.998214186
    num_examples: 2767
  download_size: 384196
  dataset_size: 1129609.423755175
- config_name: esp
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  splits:
  - name: train
    num_bytes: 395216.75356031314
    num_examples: 1996
  - name: dev
    num_bytes: 35253.902462578466
    num_examples: 184
  - name: test
    num_bytes: 342619.1026284949
    num_examples: 1695
  download_size: 206706
  dataset_size: 773089.7586513865
- config_name: hau
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  splits:
  - name: train
    num_bytes: 424719.4070074507
    num_examples: 2145
  - name: dev
    num_bytes: 68208.63737324964
    num_examples: 356
  - name: test
    num_bytes: 218305.97689603214
    num_examples: 1080
  download_size: 258984
  dataset_size: 711234.0212767324
- config_name: ptbr
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  splits:
  - name: train
    num_bytes: 440757.7622371027
    num_examples: 2226
  - name: dev
    num_bytes: 38319.45919845485
    num_examples: 200
  - name: test
    num_bytes: 449952.87460237736
    num_examples: 2226
  download_size: 449617
  dataset_size: 929030.096037935
- config_name: ron
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  splits:
  - name: train
    num_bytes: 245327.43369801
    num_examples: 1239
  - name: dev
    num_bytes: 23566.467407049735
    num_examples: 123
  - name: test
    num_bytes: 226189.2482839444
    num_examples: 1119
  download_size: 229120
  dataset_size: 495083.1493890041
- config_name: rus
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  splits:
  - name: train
    num_bytes: 439569.73592379515
    num_examples: 2220
  - name: dev
    num_bytes: 65717.87252535007
    num_examples: 343
  - name: test
    num_bytes: 131387.85646520453
    num_examples: 650
  download_size: 257485
  dataset_size: 636675.4649143497
- config_name: ukr
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  splits:
  - name: train
    num_bytes: 488278.8147694049
    num_examples: 2466
  - name: dev
    num_bytes: 47707.72670207629
    num_examples: 249
  - name: test
    num_bytes: 451569.9559127183
    num_examples: 2234
  download_size: 380447
  dataset_size: 987556.4973841995
configs:
- config_name: arq
  data_files:
  - split: train
    path: arq/train-*
  - split: dev
    path: arq/dev-*
  - split: test
    path: arq/test-*
- config_name: chn
  data_files:
  - split: train
    path: chn/train-*
  - split: dev
    path: chn/dev-*
  - split: test
    path: chn/test-*
- config_name: deu
  data_files:
  - split: train
    path: deu/train-*
  - split: dev
    path: deu/dev-*
  - split: test
    path: deu/test-*
- config_name: eng
  data_files:
  - split: train
    path: eng/train-*
  - split: dev
    path: eng/dev-*
  - split: test
    path: eng/test-*
- config_name: esp
  data_files:
  - split: train
    path: esp/train-*
  - split: dev
    path: esp/dev-*
  - split: test
    path: esp/test-*
- config_name: hau
  data_files:
  - split: train
    path: hau/train-*
  - split: dev
    path: hau/dev-*
  - split: test
    path: hau/test-*
- config_name: ptbr
  data_files:
  - split: train
    path: ptbr/train-*
  - split: dev
    path: ptbr/dev-*
  - split: test
    path: ptbr/test-*
- config_name: ron
  data_files:
  - split: train
    path: ron/train-*
  - split: dev
    path: ron/dev-*
  - split: test
    path: ron/test-*
- config_name: rus
  data_files:
  - split: train
    path: rus/train-*
  - split: dev
    path: rus/dev-*
  - split: test
    path: rus/test-*
- config_name: ukr
  data_files:
  - split: train
    path: ukr/train-*
  - split: dev
    path: ukr/dev-*
  - split: test
    path: ukr/test-*
---

# BRIGHTER Emotion Intensities Dataset

This dataset contains the emotion intensities data from the BRIGHTER paper: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages.

## Dataset Description

The BRIGHTER Emotion Intensities dataset is a comprehensive multi-language emotion intensity dataset with separate configurations for each language. It represents one of the largest human-annotated emotion datasets across multiple languages, providing numerical intensity scores for emotions.

- **Total languages**: 10 languages
- **Total examples**: 41196
- **Splits**: train, dev, test

## About BRIGHTER

BRIGHTER addresses the gap in human-annotated textual emotion recognition datasets for low-resource languages. While most existing emotion datasets focus on English, BRIGHTER covers multiple languages, including many low-resource ones. The dataset was created by selecting text from various sources and having annotators label six emotion intensities: anger, disgust, fear, joy, sadness, and surprise.

The dataset contains text in the following languages: Algerian Arabic, Mandarin Chinese, German, English, Spanish (Ecuador, Colombia, Mexico), Hausa, Portuguese (Brazil), Romanian, Russian, and Ukrainian.

## Language Configurations

Each language is available as a separate configuration with the following statistics:

| Original Code | ISO Code | Train Examples | Dev Examples | Test Examples | Total |
|---------------|----------|---------------|-------------|--------------|-------|
| arq | ar | 901 | 100 | 902 | 1903 |
| chn | zh | 2642 | 200 | 2642 | 5484 |
| deu | de | 2603 | 200 | 2604 | 5407 |
| eng | en | 2768 | 116 | 2767 | 5651 |
| esp | es | 1996 | 184 | 1695 | 3875 |
| hau | ha | 2145 | 356 | 1080 | 3581 |
| ptbr | pt | 2226 | 200 | 2226 | 4652 |
| ron | ro | 1239 | 123 | 1119 | 2481 |
| rus | ru | 2220 | 343 | 650 | 3213 |
| ukr | uk | 2466 | 249 | 2234 | 4949 |

## Features

- **id**: Unique identifier for each example
- **text**: Text content to classify
- **anger**, **disgust**, **fear**, **joy**, **sadness**, **surprise**: Intensity scores for each emotion

## Dataset Characteristics

Unlike the BRIGHTER-emotion-categories dataset that provides binary labels for emotion presence, this dataset provides intensity scores on a scale, making it suitable for regression tasks or fine-grained emotion analysis.

## Usage

```python
from datasets import load_dataset

# Load all data for a specific language
eng_dataset = load_dataset("YOUR_USERNAME/BRIGHTER-emotion-intensities", "eng")

# Or load a specific split for a language
eng_train = load_dataset("YOUR_USERNAME/BRIGHTER-emotion-intensities", "eng", split="train")
```

## Citation

If you use this dataset, please cite the following papers:

```
@misc{muhammad2025brighterbridginggaphumanannotated,
      title={BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages}, 
      author={Shamsuddeen Hassan Muhammad and Nedjma Ousidhoum and Idris Abdulmumin and Jan Philip Wahle and Terry Ruas and Meriem Beloucif and Christine de Kock and Nirmal Surange and Daniela Teodorescu and Ibrahim Said Ahmad and David Ifeoluwa Adelani and Alham Fikri Aji and Felermino D. M. A. Ali and Ilseyar Alimova and Vladimir Araujo and Nikolay Babakov and Naomi Baes and Ana-Maria Bucur and Andiswa Bukula and Guanqun Cao and Rodrigo Tufiño and Rendi Chevi and Chiamaka Ijeoma Chukwuneke and Alexandra Ciobotaru and Daryna Dementieva and Murja Sani Gadanya and Robert Geislinger and Bela Gipp and Oumaima Hourrane and Oana Ignat and Falalu Ibrahim Lawan and Rooweither Mabuya and Rahmad Mahendra and Vukosi Marivate and Andrew Piper and Alexander Panchenko and Charles Henrique Porto Ferreira and Vitaly Protasov and Samuel Rutunda and Manish Shrivastava and Aura Cristina Udrea and Lilian Diana Awuor Wanzare and Sophie Wu and Florian Valentin Wunderlich and Hanif Muhammad Zhafran and Tianhui Zhang and Yi Zhou and Saif M. Mohammad},
      year={2025},
      eprint={2502.11926},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2502.11926}, 
}
```

```
@misc{muhammad2025semeval2025task11bridging,
      title={SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection}, 
      author={Shamsuddeen Hassan Muhammad and Nedjma Ousidhoum and Idris Abdulmumin and Seid Muhie Yimam and Jan Philip Wahle and Terry Ruas and Meriem Beloucif and Christine De Kock and Tadesse Destaw Belay and Ibrahim Said Ahmad and Nirmal Surange and Daniela Teodorescu and David Ifeoluwa Adelani and Alham Fikri Aji and Felermino Ali and Vladimir Araujo and Abinew Ali Ayele and Oana Ignat and Alexander Panchenko and Yi Zhou and Saif M. Mohammad},
      year={2025},
      eprint={2503.07269},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2503.07269}, 
}
```

## License
This dataset is licensed under CC-BY 4.0.