File size: 2,510 Bytes
da3e9e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from scripts.generate import MetashiftFactory, MetashiftData, get_dataset_name
import json
from omegaconf import OmegaConf
import random
import pytest

CONFIG_PATH = "configs/generate.yaml"
CANDIDATE_SUBSETS_PATH = "scripts/artifacts/csp.pkl"


def test_consistent_generate():
    config = OmegaConf.load(CONFIG_PATH)
    metashift_factory = MetashiftFactory(
        full_candidate_subsets_path=CANDIDATE_SUBSETS_PATH,
        visual_genome_images_dir=".",
    )
    info: dict[str, MetashiftData] = dict()
    for task_config in config.tasks:
        for experiment_config in task_config.experiments:
            data = metashift_factory.create(
                seed=task_config.seed,
                selected_classes=task_config.selected_classes,
                spurious_class=experiment_config.spurious_class,
                train_spurious_context=experiment_config.train_context,
                test_spurious_context=experiment_config.test_context,
                num_test_images_per_class=task_config.num_images_per_class_test,
                num_train_images_per_class=task_config.num_images_per_class_train,
            )
            dataset_name = get_dataset_name(task_config.name, experiment_config.name)
            assert dataset_name not in info
            info[dataset_name] = data

    random.seed(2)
    unique_ids = metashift_factory._get_unique_ids_from_info(info)
    random.seed(10000)
    unique_ids_2 = metashift_factory._get_unique_ids_from_info(info)

    assert unique_ids == unique_ids_2


@pytest.mark.parametrize(
    "scenario_path",
    [
        "task_1_bed_cat_dog.json",
        "task_1_bed_dog_cat.json",
        "task_2_table_books_cat.json",
        "task_2_table_books_dog.json",
        "task_2_table_cat_dog.json",
        "task_2_table_dog_cat.json",
    ],
)
def test_unique_train_test_ids(scenario_path: str):
    """ Test that the train and test sets have unique ids."""
    with open(f"scenarios/{scenario_path}", "r") as f:
        scenario = json.load(f)
        train_unique_ids = set()
        test_unique_ids = set()
        for train_ids in scenario["data_splits"]["train"].values():
            for train_id in train_ids:
                train_unique_ids.add(train_id)
        for test_ids in scenario["data_splits"]["test"].values():
            for test_id in test_ids:
                test_unique_ids.add(test_id)
        
        intersection = train_unique_ids.intersection(test_unique_ids)
        assert len(intersection) == 0, len(intersection)