--- license: cc-by-3.0 dataset_info: features: - name: audio dtype: audio - name: relative_path dtype: string splits: - name: test num_bytes: 13646545685.208 num_examples: 15292 - name: validation num_bytes: 22378049262.984 num_examples: 25468 - name: train num_bytes: 269257423227.302 num_examples: 150787 download_size: 295850537553 dataset_size: 305282018175.494 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* --- # MelodySim: Measuring Melody-aware Music Similarity for Plagiarism Detection [Github](https://github.com/AMAAI-Lab/MelodySim) | [Model](https://huggingface.co/amaai-lab/MelodySim/tree/main) | [Paper](https://arxiv.org/abs/2505.20979) The MelodySim dataset contains 1,710 valid synthesized pieces originated from Slakh2100 dataset, each containing 4 different versions (through various augmentation settings), with a total duration of 419 hours. This dataset may help research in: - Music similarity learning - Music plagiarism detection # Dataset Details The MelodySim dataset contains three splits: train, validation and test. Each split contains multiple tracks. Each track folder contains the same song in 4 versions ("original", "version_0", "version_1", "version_2"), all of which are synthesized from the same midi file with [sf2](https://github.com/Rainbow-Dreamer/sf2_loader) in different settings. Checkout [MelodySim Paper](https://arxiv.org/abs/2505.20979) for details how the different versions are augmented. Each version contains multiple 10-second chunks named with their indices. After downloading the dataset, [this dataloader](https://github.com/AMAAI-Lab/MelodySim/blob/main/data/dataloader.py) may help loading the dataset. # Citation If you find this work useful in your research, please cite: ```bibtex @article{lu2025melodysim, title={Text2midi-InferAlign: Improving Symbolic Music Generation with Inference-Time Alignment}, author={Tongyu Lu and Charlotta-Marlena Geist and Jan Melechovsky and Abhinaba Roy and Dorien Herremans}, year={2025}, journal={arXiv:2505.20979} } ```