File size: 4,153 Bytes
4e8733e
 
 
 
 
 
 
 
 
 
ffe68b3
 
 
 
4f3685e
 
 
 
87850f9
 
 
 
4e8733e
ffe68b3
4e8733e
 
19f0c15
4e8733e
 
 
 
be34d67
 
f2463aa
 
4e8733e
 
7c74e59
 
4e8733e
7c74e59
 
4e8733e
7c74e59
 
 
 
ffe68b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f3685e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87850f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e8733e
66fb4c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
configs:
- config_name: default
  data_files:
  - split: en_in
    path: data/en_in-*
  - split: en_ng
    path: data/en_ng-*
  - split: en_us
    path: data/en_us-*
- config_name: en_in
  data_files:
  - split: train
    path: en_in/train-*
- config_name: en_ng
  data_files:
  - split: train
    path: en_ng/train-*
- config_name: en_us
  data_files:
  - split: train
    path: en_us/train-*
dataset_info:
- config_name: default
  features:
  - name: transcript
    dtype: string
  - name: correct_word
    dtype: string
  - name: distractors
    dtype: string
  - name: win
    dtype: string
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: en_in
    num_bytes: 445911
    num_examples: 447
  - name: en_ng
    num_bytes: 485626
    num_examples: 471
  - name: en_us
    num_bytes: 465533
    num_examples: 478
  download_size: 524698
  dataset_size: 1397070
- config_name: en_in
  features:
  - name: transcript
    dtype: string
  - name: correct_word
    dtype: string
  - name: distractors
    dtype: string
  - name: win
    dtype: string
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 445911
    num_examples: 447
  download_size: 158201
  dataset_size: 445911
- config_name: en_ng
  features:
  - name: transcript
    dtype: string
  - name: correct_word
    dtype: string
  - name: distractors
    dtype: string
  - name: win
    dtype: string
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 485626
    num_examples: 471
  download_size: 187583
  dataset_size: 485626
- config_name: en_us
  features:
  - name: transcript
    dtype: string
  - name: correct_word
    dtype: string
  - name: distractors
    dtype: string
  - name: win
    dtype: string
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 465533
    num_examples: 478
  download_size: 178914
  dataset_size: 465533
---
## Original Attribution

MD3-EN: The Multi-Dialect Dataset of Dialogues
- Authors: Jacob Eisenstein (jeisenstein@google.com), Clara Rivera, Vinodkumar Prabhakaran, Jon Clark, Dora Demszky, Sunny Mak, Ravi Rajakumar, David Elworthy, Landis Baker, Devyani Sharma
- Paper: https://arxiv.org/abs/2305.11355, published at InterSpeech 2023
- License: CC BY-SA 4.0

## Dataset Description

The MD3 Taboo Game dataset consists of transcripts of two people playing the Taboo game, where one person tries to get the other to guess a secret word without saying certain distractor words.

The dataset includes:
- Transcripts from 3 English dialects: Indian English (en_in), Nigerian English (en_ng), and American English (en_us)
- The correct word to be guessed in each game
- Distractor words that cannot be used during the game

## Dataset Structure

The dataset is organized into three splits by dialect:
- `en_in`: Indian English
- `en_ng`: Nigerian English
- `en_us`: American English

Each split contains the following fields:
- `id`: Unique identifier for the dialogue
- `transcript`: The dialogue transcript
- `correct_word`: The target word to be guessed
- `distractors`: List of words that cannot be used during the game

## Usage

This dataset can be used to evaluate language models on their ability to understand contextual clues and infer missing information, similar to how a human would play the Taboo game.

Example usage:
```python
from datasets import load_dataset

dataset = load_dataset("REPO_NAME_HERE")
example = dataset["en_us"][0]
print(f"Transcript: {example['transcript']}")
print(f"Correct word: {example['correct_word']}")
print(f"Distractors: {example['distractors']}")
```

## Citation

If you use this dataset, please cite the original MD3 paper:

```
@inproceedings{eisenstein2023md3,
  title={MD3: The Multi-Dialect Dataset of Dialogues},
  author={Eisenstein, Jacob and Rivera, Clara and Prabhakaran, Vinodkumar and Clark, Jon and Demszky, Dora and Mak, Sunny and Rajakumar, Ravi and Elworthy, David and Baker, Landis and Sharma, Devyani},
  booktitle={Proceedings of INTERSPEECH},
  year={2023}
}
```

## License

This re-release of the dataset is bound by the original MD3 corpus CC BY-SA 4.0 license.