File size: 4,153 Bytes
4e8733e ffe68b3 4f3685e 87850f9 4e8733e ffe68b3 4e8733e 19f0c15 4e8733e be34d67 f2463aa 4e8733e 7c74e59 4e8733e 7c74e59 4e8733e 7c74e59 ffe68b3 4f3685e 87850f9 4e8733e 66fb4c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
configs:
- config_name: default
data_files:
- split: en_in
path: data/en_in-*
- split: en_ng
path: data/en_ng-*
- split: en_us
path: data/en_us-*
- config_name: en_in
data_files:
- split: train
path: en_in/train-*
- config_name: en_ng
data_files:
- split: train
path: en_ng/train-*
- config_name: en_us
data_files:
- split: train
path: en_us/train-*
dataset_info:
- config_name: default
features:
- name: transcript
dtype: string
- name: correct_word
dtype: string
- name: distractors
dtype: string
- name: win
dtype: string
- name: __index_level_0__
dtype: int64
splits:
- name: en_in
num_bytes: 445911
num_examples: 447
- name: en_ng
num_bytes: 485626
num_examples: 471
- name: en_us
num_bytes: 465533
num_examples: 478
download_size: 524698
dataset_size: 1397070
- config_name: en_in
features:
- name: transcript
dtype: string
- name: correct_word
dtype: string
- name: distractors
dtype: string
- name: win
dtype: string
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 445911
num_examples: 447
download_size: 158201
dataset_size: 445911
- config_name: en_ng
features:
- name: transcript
dtype: string
- name: correct_word
dtype: string
- name: distractors
dtype: string
- name: win
dtype: string
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 485626
num_examples: 471
download_size: 187583
dataset_size: 485626
- config_name: en_us
features:
- name: transcript
dtype: string
- name: correct_word
dtype: string
- name: distractors
dtype: string
- name: win
dtype: string
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 465533
num_examples: 478
download_size: 178914
dataset_size: 465533
---
## Original Attribution
MD3-EN: The Multi-Dialect Dataset of Dialogues
- Authors: Jacob Eisenstein (jeisenstein@google.com), Clara Rivera, Vinodkumar Prabhakaran, Jon Clark, Dora Demszky, Sunny Mak, Ravi Rajakumar, David Elworthy, Landis Baker, Devyani Sharma
- Paper: https://arxiv.org/abs/2305.11355, published at InterSpeech 2023
- License: CC BY-SA 4.0
## Dataset Description
The MD3 Taboo Game dataset consists of transcripts of two people playing the Taboo game, where one person tries to get the other to guess a secret word without saying certain distractor words.
The dataset includes:
- Transcripts from 3 English dialects: Indian English (en_in), Nigerian English (en_ng), and American English (en_us)
- The correct word to be guessed in each game
- Distractor words that cannot be used during the game
## Dataset Structure
The dataset is organized into three splits by dialect:
- `en_in`: Indian English
- `en_ng`: Nigerian English
- `en_us`: American English
Each split contains the following fields:
- `id`: Unique identifier for the dialogue
- `transcript`: The dialogue transcript
- `correct_word`: The target word to be guessed
- `distractors`: List of words that cannot be used during the game
## Usage
This dataset can be used to evaluate language models on their ability to understand contextual clues and infer missing information, similar to how a human would play the Taboo game.
Example usage:
```python
from datasets import load_dataset
dataset = load_dataset("REPO_NAME_HERE")
example = dataset["en_us"][0]
print(f"Transcript: {example['transcript']}")
print(f"Correct word: {example['correct_word']}")
print(f"Distractors: {example['distractors']}")
```
## Citation
If you use this dataset, please cite the original MD3 paper:
```
@inproceedings{eisenstein2023md3,
title={MD3: The Multi-Dialect Dataset of Dialogues},
author={Eisenstein, Jacob and Rivera, Clara and Prabhakaran, Vinodkumar and Clark, Jon and Demszky, Dora and Mak, Sunny and Rajakumar, Ravi and Elworthy, David and Baker, Landis and Sharma, Devyani},
booktitle={Proceedings of INTERSPEECH},
year={2023}
}
```
## License
This re-release of the dataset is bound by the original MD3 corpus CC BY-SA 4.0 license. |