jimwyattTK commited on
Commit
16ffaad
·
verified ·
1 Parent(s): cc1ecd0

Delete public-parquet/.ipynb_checkpoints/personal shopper demo-checkpoint.ipynb

Browse files
public-parquet/.ipynb_checkpoints/personal shopper demo-checkpoint.ipynb DELETED
@@ -1,122 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "e255d061-b87e-41d1-bdec-75717c311031",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import glob, heapq, logging, os, time\n",
11
- "import polars as pl\n",
12
- "import pandas as pd\n",
13
- "import numpy as np\n",
14
- "from sentence_transformers import SentenceTransformer\n",
15
- "from IPython.display import display\n",
16
- "\n",
17
- "# ─── logging config ───────────────────────────────────────────────────────────\n",
18
- "logging.basicConfig(\n",
19
- " level=logging.INFO,\n",
20
- " format=\"[%(asctime)s] %(message)s\",\n",
21
- " datefmt=\"%H:%M:%S\"\n",
22
- ")\n",
23
- "\n",
24
- "# ─── helper: cosine similarity ────────────────────────────────────────────────\n",
25
- "def cosine_batch(q_vec: np.ndarray, mat: np.ndarray) -> np.ndarray:\n",
26
- " q_norm = q_vec / np.linalg.norm(q_vec)\n",
27
- " mat_norm = mat / np.linalg.norm(mat, axis=1, keepdims=True)\n",
28
- " return mat_norm @ q_norm\n",
29
- "\n",
30
- "# ─── model & shards ───────────────────────────────────────────────────────────\n",
31
- "MODEL_NAME = \"sentence-transformers/all-MiniLM-L6-v2\"\n",
32
- "encoder = SentenceTransformer(MODEL_NAME)\n",
33
- "SHARDS = sorted(glob.glob(\"tsmpd_public_*.parquet\"))\n",
34
- "\n",
35
- "# ─── streaming search ─────────────────────────────────────────────────────────\n",
36
- "def search_streaming(query: str, top_k: int = 10) -> pd.DataFrame:\n",
37
- " q_vec = encoder.encode(query, convert_to_numpy=True).astype(\"float32\")\n",
38
- "\n",
39
- " best = [] # heap of (score, uid, vendor, title, paragraph)\n",
40
- " heapq.heapify(best)\n",
41
- "\n",
42
- " for idx, shard in enumerate(SHARDS, 1):\n",
43
- " t0 = time.perf_counter()\n",
44
- " logging.info(f\"Shard {idx}/{len(SHARDS)} → loading {os.path.basename(shard)}\")\n",
45
- "\n",
46
- " tbl = pl.read_parquet(\n",
47
- " shard,\n",
48
- " columns=[\"uid\", \"vendor\", \"title\", \"paragraph\", \"embedding\"]\n",
49
- " )\n",
50
- " logging.info(f\" rows = {tbl.height:,} | load = {time.perf_counter() - t0:.1f}s\")\n",
51
- "\n",
52
- " embs = np.vstack(tbl[\"embedding\"].to_list()).astype(\"float32\")\n",
53
- " sims = cosine_batch(q_vec, embs)\n",
54
- "\n",
55
- " for i, score in enumerate(sims):\n",
56
- " item = (\n",
57
- " float(score),\n",
58
- " tbl[\"uid\"][i],\n",
59
- " tbl[\"vendor\"][i],\n",
60
- " tbl[\"title\"][i],\n",
61
- " tbl[\"paragraph\"][i],\n",
62
- " )\n",
63
- " if len(best) < top_k:\n",
64
- " heapq.heappush(best, item)\n",
65
- " elif score > best[0][0]:\n",
66
- " heapq.heapreplace(best, item)\n",
67
- "\n",
68
- " logging.info(\n",
69
- " f\" processed in {time.perf_counter() - t0:.1f}s \"\n",
70
- " f\"best_min={best[0][0]:.4f}\"\n",
71
- " )\n",
72
- " del tbl, embs, sims # free mem per shard\n",
73
- "\n",
74
- " if not best:\n",
75
- " return pd.DataFrame()\n",
76
- "\n",
77
- " best_sorted = sorted(best, key=lambda x: x[0], reverse=True)\n",
78
- " scores, uids, vendors, titles, paras = zip(*best_sorted)\n",
79
- "\n",
80
- " return pd.DataFrame({\n",
81
- " \"score\": scores,\n",
82
- " \"uid\": uids,\n",
83
- " \"vendor\": vendors,\n",
84
- " \"title\": titles,\n",
85
- " \"paragraph\": paras\n",
86
- " })\n",
87
- "\n",
88
- "# ─── run a test query ─────────────────────────────────────────────────────────\n",
89
- "query = \"vintage brass floor lamp with Edison bulbs\"\n",
90
- "start = time.perf_counter()\n",
91
- "hits = search_streaming(query, top_k=5)\n",
92
- "elapsed = time.perf_counter() - start\n",
93
- "logging.info(f\"Finished query in {elapsed:.1f}s\")\n",
94
- "\n",
95
- "# display full text in each column\n",
96
- "pd.set_option(\"display.max_colwidth\", None)\n",
97
- "display(hits)\n"
98
- ]
99
- }
100
- ],
101
- "metadata": {
102
- "kernelspec": {
103
- "display_name": "Python 3 (ipykernel)",
104
- "language": "python",
105
- "name": "python3"
106
- },
107
- "language_info": {
108
- "codemirror_mode": {
109
- "name": "ipython",
110
- "version": 3
111
- },
112
- "file_extension": ".py",
113
- "mimetype": "text/x-python",
114
- "name": "python",
115
- "nbconvert_exporter": "python",
116
- "pygments_lexer": "ipython3",
117
- "version": "3.13.2"
118
- }
119
- },
120
- "nbformat": 4,
121
- "nbformat_minor": 5
122
- }