Delete public-parquet/.ipynb_checkpoints/personal shopper demo-checkpoint.ipynb
Browse files
public-parquet/.ipynb_checkpoints/personal shopper demo-checkpoint.ipynb
DELETED
@@ -1,122 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": null,
|
6 |
-
"id": "e255d061-b87e-41d1-bdec-75717c311031",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [],
|
9 |
-
"source": [
|
10 |
-
"import glob, heapq, logging, os, time\n",
|
11 |
-
"import polars as pl\n",
|
12 |
-
"import pandas as pd\n",
|
13 |
-
"import numpy as np\n",
|
14 |
-
"from sentence_transformers import SentenceTransformer\n",
|
15 |
-
"from IPython.display import display\n",
|
16 |
-
"\n",
|
17 |
-
"# ─── logging config ───────────────────────────────────────────────────────────\n",
|
18 |
-
"logging.basicConfig(\n",
|
19 |
-
" level=logging.INFO,\n",
|
20 |
-
" format=\"[%(asctime)s] %(message)s\",\n",
|
21 |
-
" datefmt=\"%H:%M:%S\"\n",
|
22 |
-
")\n",
|
23 |
-
"\n",
|
24 |
-
"# ─── helper: cosine similarity ────────────────────────────────────────────────\n",
|
25 |
-
"def cosine_batch(q_vec: np.ndarray, mat: np.ndarray) -> np.ndarray:\n",
|
26 |
-
" q_norm = q_vec / np.linalg.norm(q_vec)\n",
|
27 |
-
" mat_norm = mat / np.linalg.norm(mat, axis=1, keepdims=True)\n",
|
28 |
-
" return mat_norm @ q_norm\n",
|
29 |
-
"\n",
|
30 |
-
"# ─── model & shards ───────────────────────────────────────────────────────────\n",
|
31 |
-
"MODEL_NAME = \"sentence-transformers/all-MiniLM-L6-v2\"\n",
|
32 |
-
"encoder = SentenceTransformer(MODEL_NAME)\n",
|
33 |
-
"SHARDS = sorted(glob.glob(\"tsmpd_public_*.parquet\"))\n",
|
34 |
-
"\n",
|
35 |
-
"# ─── streaming search ─────────────────────────────────────────────────────────\n",
|
36 |
-
"def search_streaming(query: str, top_k: int = 10) -> pd.DataFrame:\n",
|
37 |
-
" q_vec = encoder.encode(query, convert_to_numpy=True).astype(\"float32\")\n",
|
38 |
-
"\n",
|
39 |
-
" best = [] # heap of (score, uid, vendor, title, paragraph)\n",
|
40 |
-
" heapq.heapify(best)\n",
|
41 |
-
"\n",
|
42 |
-
" for idx, shard in enumerate(SHARDS, 1):\n",
|
43 |
-
" t0 = time.perf_counter()\n",
|
44 |
-
" logging.info(f\"Shard {idx}/{len(SHARDS)} → loading {os.path.basename(shard)}\")\n",
|
45 |
-
"\n",
|
46 |
-
" tbl = pl.read_parquet(\n",
|
47 |
-
" shard,\n",
|
48 |
-
" columns=[\"uid\", \"vendor\", \"title\", \"paragraph\", \"embedding\"]\n",
|
49 |
-
" )\n",
|
50 |
-
" logging.info(f\" rows = {tbl.height:,} | load = {time.perf_counter() - t0:.1f}s\")\n",
|
51 |
-
"\n",
|
52 |
-
" embs = np.vstack(tbl[\"embedding\"].to_list()).astype(\"float32\")\n",
|
53 |
-
" sims = cosine_batch(q_vec, embs)\n",
|
54 |
-
"\n",
|
55 |
-
" for i, score in enumerate(sims):\n",
|
56 |
-
" item = (\n",
|
57 |
-
" float(score),\n",
|
58 |
-
" tbl[\"uid\"][i],\n",
|
59 |
-
" tbl[\"vendor\"][i],\n",
|
60 |
-
" tbl[\"title\"][i],\n",
|
61 |
-
" tbl[\"paragraph\"][i],\n",
|
62 |
-
" )\n",
|
63 |
-
" if len(best) < top_k:\n",
|
64 |
-
" heapq.heappush(best, item)\n",
|
65 |
-
" elif score > best[0][0]:\n",
|
66 |
-
" heapq.heapreplace(best, item)\n",
|
67 |
-
"\n",
|
68 |
-
" logging.info(\n",
|
69 |
-
" f\" processed in {time.perf_counter() - t0:.1f}s \"\n",
|
70 |
-
" f\"best_min={best[0][0]:.4f}\"\n",
|
71 |
-
" )\n",
|
72 |
-
" del tbl, embs, sims # free mem per shard\n",
|
73 |
-
"\n",
|
74 |
-
" if not best:\n",
|
75 |
-
" return pd.DataFrame()\n",
|
76 |
-
"\n",
|
77 |
-
" best_sorted = sorted(best, key=lambda x: x[0], reverse=True)\n",
|
78 |
-
" scores, uids, vendors, titles, paras = zip(*best_sorted)\n",
|
79 |
-
"\n",
|
80 |
-
" return pd.DataFrame({\n",
|
81 |
-
" \"score\": scores,\n",
|
82 |
-
" \"uid\": uids,\n",
|
83 |
-
" \"vendor\": vendors,\n",
|
84 |
-
" \"title\": titles,\n",
|
85 |
-
" \"paragraph\": paras\n",
|
86 |
-
" })\n",
|
87 |
-
"\n",
|
88 |
-
"# ─── run a test query ─────────────────────────────────────────────────────────\n",
|
89 |
-
"query = \"vintage brass floor lamp with Edison bulbs\"\n",
|
90 |
-
"start = time.perf_counter()\n",
|
91 |
-
"hits = search_streaming(query, top_k=5)\n",
|
92 |
-
"elapsed = time.perf_counter() - start\n",
|
93 |
-
"logging.info(f\"Finished query in {elapsed:.1f}s\")\n",
|
94 |
-
"\n",
|
95 |
-
"# display full text in each column\n",
|
96 |
-
"pd.set_option(\"display.max_colwidth\", None)\n",
|
97 |
-
"display(hits)\n"
|
98 |
-
]
|
99 |
-
}
|
100 |
-
],
|
101 |
-
"metadata": {
|
102 |
-
"kernelspec": {
|
103 |
-
"display_name": "Python 3 (ipykernel)",
|
104 |
-
"language": "python",
|
105 |
-
"name": "python3"
|
106 |
-
},
|
107 |
-
"language_info": {
|
108 |
-
"codemirror_mode": {
|
109 |
-
"name": "ipython",
|
110 |
-
"version": 3
|
111 |
-
},
|
112 |
-
"file_extension": ".py",
|
113 |
-
"mimetype": "text/x-python",
|
114 |
-
"name": "python",
|
115 |
-
"nbconvert_exporter": "python",
|
116 |
-
"pygments_lexer": "ipython3",
|
117 |
-
"version": "3.13.2"
|
118 |
-
}
|
119 |
-
},
|
120 |
-
"nbformat": 4,
|
121 |
-
"nbformat_minor": 5
|
122 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|