|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Records a dataset. Actions for the robot can be either generated by teleoperation or by a policy. |
|
|
|
Example: |
|
|
|
```shell |
|
python -m lerobot.record \ |
|
--robot.type=so100_follower \ |
|
--robot.port=/dev/tty.usbmodem58760431541 \ |
|
--robot.cameras="{laptop: {type: opencv, camera_index: 0, width: 640, height: 480}}" \ |
|
--robot.id=black \ |
|
--teleop.type=so100_leader \ |
|
--teleop.port=/dev/tty.usbmodem58760431551 \ |
|
--teleop.id=blue \ |
|
--dataset.repo_id=aliberts/record-test \ |
|
--dataset.num_episodes=2 \ |
|
--dataset.single_task="Grab the cube" |
|
``` |
|
""" |
|
|
|
import logging |
|
import time |
|
from dataclasses import asdict, dataclass |
|
from pathlib import Path |
|
from pprint import pformat |
|
|
|
import numpy as np |
|
import rerun as rr |
|
|
|
from lerobot.common.cameras import ( |
|
CameraConfig, |
|
) |
|
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig |
|
from lerobot.common.cameras.realsense.configuration_realsense import RealSenseCameraConfig |
|
from lerobot.common.datasets.image_writer import safe_stop_image_writer |
|
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset |
|
from lerobot.common.datasets.utils import build_dataset_frame, hw_to_dataset_features |
|
from lerobot.common.policies.factory import make_policy |
|
from lerobot.common.policies.pretrained import PreTrainedPolicy |
|
from lerobot.common.robots import ( |
|
Robot, |
|
RobotConfig, |
|
koch_follower, |
|
make_robot_from_config, |
|
so100_follower, |
|
so101_follower, |
|
) |
|
from lerobot.common.teleoperators import ( |
|
Teleoperator, |
|
TeleoperatorConfig, |
|
make_teleoperator_from_config, |
|
) |
|
from lerobot.common.utils.control_utils import ( |
|
init_keyboard_listener, |
|
is_headless, |
|
predict_action, |
|
sanity_check_dataset_name, |
|
sanity_check_dataset_robot_compatibility, |
|
) |
|
from lerobot.common.utils.robot_utils import busy_wait |
|
from lerobot.common.utils.utils import ( |
|
get_safe_torch_device, |
|
init_logging, |
|
log_say, |
|
) |
|
from lerobot.common.utils.visualization_utils import _init_rerun |
|
from lerobot.configs import parser |
|
from lerobot.configs.policies import PreTrainedConfig |
|
|
|
from .common.teleoperators import koch_leader, so100_leader, so101_leader |
|
|
|
|
|
@dataclass |
|
class DatasetRecordConfig: |
|
|
|
repo_id: str |
|
|
|
single_task: str |
|
|
|
root: str | Path | None = None |
|
|
|
fps: int = 30 |
|
|
|
episode_time_s: int | float = 60 |
|
|
|
reset_time_s: int | float = 60 |
|
|
|
num_episodes: int = 50 |
|
|
|
video: bool = True |
|
|
|
push_to_hub: bool = True |
|
|
|
private: bool = False |
|
|
|
tags: list[str] | None = None |
|
|
|
|
|
|
|
|
|
num_image_writer_processes: int = 0 |
|
|
|
|
|
|
|
num_image_writer_threads_per_camera: int = 4 |
|
|
|
def __post_init__(self): |
|
if self.single_task is None: |
|
raise ValueError("You need to provide a task as argument in `single_task`.") |
|
|
|
|
|
@dataclass |
|
class RecordConfig: |
|
robot: RobotConfig |
|
dataset: DatasetRecordConfig |
|
|
|
teleop: TeleoperatorConfig | None = None |
|
|
|
policy: PreTrainedConfig | None = None |
|
|
|
display_data: bool = False |
|
|
|
play_sounds: bool = True |
|
|
|
resume: bool = False |
|
|
|
def __post_init__(self): |
|
if bool(self.teleop) == bool(self.policy): |
|
raise ValueError("Choose either a policy or a teleoperator to control the robot") |
|
|
|
|
|
policy_path = parser.get_path_arg("policy") |
|
if policy_path: |
|
cli_overrides = parser.get_cli_overrides("policy") |
|
self.policy = PreTrainedConfig.from_pretrained(policy_path, cli_overrides=cli_overrides) |
|
self.policy.pretrained_path = policy_path |
|
|
|
@classmethod |
|
def __get_path_fields__(cls) -> list[str]: |
|
"""This enables the parser to load config from the policy using `--policy.path=local/dir`""" |
|
return ["policy"] |
|
|
|
|
|
@safe_stop_image_writer |
|
def record_loop( |
|
robot: Robot, |
|
events: dict, |
|
fps: int, |
|
dataset: LeRobotDataset | None = None, |
|
teleop: Teleoperator | None = None, |
|
policy: PreTrainedPolicy | None = None, |
|
control_time_s: int | None = None, |
|
single_task: str | None = None, |
|
display_data: bool = False, |
|
): |
|
if dataset is not None and dataset.fps != fps: |
|
raise ValueError(f"The dataset fps should be equal to requested fps ({dataset.fps} != {fps}).") |
|
|
|
|
|
if policy is not None: |
|
policy.reset() |
|
|
|
timestamp = 0 |
|
start_episode_t = time.perf_counter() |
|
while timestamp < control_time_s: |
|
start_loop_t = time.perf_counter() |
|
|
|
observation = robot.get_observation() |
|
|
|
if policy is not None or dataset is not None: |
|
observation_frame = build_dataset_frame(dataset.features, observation, prefix="observation") |
|
|
|
if policy is not None: |
|
action_values = predict_action( |
|
observation_frame, |
|
policy, |
|
get_safe_torch_device(policy.config.device), |
|
policy.config.use_amp, |
|
task=single_task, |
|
robot_type=robot.robot_type, |
|
) |
|
action = {key: action_values[i].item() for i, key in enumerate(robot.action_features)} |
|
else: |
|
action = teleop.get_action() |
|
|
|
|
|
|
|
sent_action = robot.send_action(action) |
|
|
|
if dataset is not None: |
|
action_frame = build_dataset_frame(dataset.features, sent_action, prefix="action") |
|
frame = {**observation_frame, **action_frame} |
|
dataset.add_frame(frame, task=single_task) |
|
|
|
if display_data: |
|
for obs, val in observation.items(): |
|
if isinstance(val, float): |
|
rr.log(f"observation.{obs}", rr.Scalar(val)) |
|
elif isinstance(val, np.ndarray): |
|
rr.log(f"observation.{obs}", rr.Image(val), static=True) |
|
for act, val in action.items(): |
|
if isinstance(val, float): |
|
rr.log(f"action.{act}", rr.Scalar(val)) |
|
|
|
dt_s = time.perf_counter() - start_loop_t |
|
busy_wait(1 / fps - dt_s) |
|
|
|
timestamp = time.perf_counter() - start_episode_t |
|
if events["exit_early"]: |
|
events["exit_early"] = False |
|
break |
|
|
|
|
|
@parser.wrap() |
|
def record(cfg: RecordConfig) -> LeRobotDataset: |
|
init_logging() |
|
logging.info(pformat(asdict(cfg))) |
|
if cfg.display_data: |
|
_init_rerun(session_name="recording") |
|
|
|
robot = make_robot_from_config(cfg.robot) |
|
teleop = make_teleoperator_from_config(cfg.teleop) if cfg.teleop is not None else None |
|
|
|
action_features = hw_to_dataset_features(robot.action_features, "action", cfg.dataset.video) |
|
obs_features = hw_to_dataset_features(robot.observation_features, "observation", cfg.dataset.video) |
|
dataset_features = {**action_features, **obs_features} |
|
|
|
if cfg.resume: |
|
dataset = LeRobotDataset( |
|
cfg.dataset.repo_id, |
|
root=cfg.dataset.root, |
|
) |
|
|
|
if hasattr(robot, "cameras") and len(robot.cameras) > 0: |
|
dataset.start_image_writer( |
|
num_processes=cfg.dataset.num_image_writer_processes, |
|
num_threads=cfg.dataset.num_image_writer_threads_per_camera * len(robot.cameras), |
|
) |
|
sanity_check_dataset_robot_compatibility(dataset, robot, cfg.dataset.fps, dataset_features) |
|
else: |
|
|
|
sanity_check_dataset_name(cfg.dataset.repo_id, cfg.policy) |
|
dataset = LeRobotDataset.create( |
|
cfg.dataset.repo_id, |
|
cfg.dataset.fps, |
|
root=cfg.dataset.root, |
|
robot_type=robot.name, |
|
features=dataset_features, |
|
use_videos=cfg.dataset.video, |
|
image_writer_processes=cfg.dataset.num_image_writer_processes, |
|
image_writer_threads=cfg.dataset.num_image_writer_threads_per_camera * len(robot.cameras), |
|
) |
|
|
|
|
|
policy = None if cfg.policy is None else make_policy(cfg.policy, ds_meta=dataset.meta) |
|
|
|
robot.connect() |
|
if teleop is not None: |
|
teleop.connect() |
|
|
|
listener, events = init_keyboard_listener() |
|
|
|
for recorded_episodes in range(cfg.dataset.num_episodes): |
|
log_say(f"Recording episode {dataset.num_episodes}", cfg.play_sounds) |
|
record_loop( |
|
robot=robot, |
|
events=events, |
|
fps=cfg.dataset.fps, |
|
teleop=teleop, |
|
policy=policy, |
|
dataset=dataset, |
|
control_time_s=cfg.dataset.episode_time_s, |
|
single_task=cfg.dataset.single_task, |
|
display_data=cfg.display_data, |
|
) |
|
|
|
|
|
|
|
if not events["stop_recording"] and ( |
|
(recorded_episodes < cfg.dataset.num_episodes - 1) or events["rerecord_episode"] |
|
): |
|
log_say("Reset the environment", cfg.play_sounds) |
|
record_loop( |
|
robot=robot, |
|
events=events, |
|
fps=cfg.dataset.fps, |
|
teleop=teleop, |
|
control_time_s=cfg.dataset.reset_time_s, |
|
single_task=cfg.dataset.single_task, |
|
display_data=cfg.display_data, |
|
) |
|
|
|
if events["rerecord_episode"]: |
|
log_say("Re-record episode", cfg.play_sounds) |
|
events["rerecord_episode"] = False |
|
events["exit_early"] = False |
|
dataset.clear_episode_buffer() |
|
continue |
|
|
|
dataset.save_episode() |
|
|
|
if events["stop_recording"]: |
|
break |
|
|
|
log_say("Stop recording", cfg.play_sounds, blocking=True) |
|
|
|
robot.disconnect() |
|
teleop.disconnect() |
|
|
|
if not is_headless() and listener is not None: |
|
listener.stop() |
|
|
|
if cfg.dataset.push_to_hub: |
|
dataset.push_to_hub(tags=cfg.dataset.tags, private=cfg.dataset.private) |
|
|
|
log_say("Exiting", cfg.play_sounds) |
|
return dataset |
|
|
|
|
|
if __name__ == "__main__": |
|
record() |
|
|