Datasets:

ArXiv:
SortingCaps / lerobot /record.py
NickKuijpers's picture
Upload folder using huggingface_hub
cdb5c9a verified
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Records a dataset. Actions for the robot can be either generated by teleoperation or by a policy.
Example:
```shell
python -m lerobot.record \
--robot.type=so100_follower \
--robot.port=/dev/tty.usbmodem58760431541 \
--robot.cameras="{laptop: {type: opencv, camera_index: 0, width: 640, height: 480}}" \
--robot.id=black \
--teleop.type=so100_leader \
--teleop.port=/dev/tty.usbmodem58760431551 \
--teleop.id=blue \
--dataset.repo_id=aliberts/record-test \
--dataset.num_episodes=2 \
--dataset.single_task="Grab the cube"
```
"""
import logging
import time
from dataclasses import asdict, dataclass
from pathlib import Path
from pprint import pformat
import numpy as np
import rerun as rr
from lerobot.common.cameras import ( # noqa: F401
CameraConfig, # noqa: F401
)
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig # noqa: F401
from lerobot.common.cameras.realsense.configuration_realsense import RealSenseCameraConfig # noqa: F401
from lerobot.common.datasets.image_writer import safe_stop_image_writer
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.utils import build_dataset_frame, hw_to_dataset_features
from lerobot.common.policies.factory import make_policy
from lerobot.common.policies.pretrained import PreTrainedPolicy
from lerobot.common.robots import ( # noqa: F401
Robot,
RobotConfig,
koch_follower,
make_robot_from_config,
so100_follower,
so101_follower,
)
from lerobot.common.teleoperators import ( # noqa: F401
Teleoperator,
TeleoperatorConfig,
make_teleoperator_from_config,
)
from lerobot.common.utils.control_utils import (
init_keyboard_listener,
is_headless,
predict_action,
sanity_check_dataset_name,
sanity_check_dataset_robot_compatibility,
)
from lerobot.common.utils.robot_utils import busy_wait
from lerobot.common.utils.utils import (
get_safe_torch_device,
init_logging,
log_say,
)
from lerobot.common.utils.visualization_utils import _init_rerun
from lerobot.configs import parser
from lerobot.configs.policies import PreTrainedConfig
from .common.teleoperators import koch_leader, so100_leader, so101_leader # noqa: F401
@dataclass
class DatasetRecordConfig:
# Dataset identifier. By convention it should match '{hf_username}/{dataset_name}' (e.g. `lerobot/test`).
repo_id: str
# A short but accurate description of the task performed during the recording (e.g. "Pick the Lego block and drop it in the box on the right.")
single_task: str
# Root directory where the dataset will be stored (e.g. 'dataset/path').
root: str | Path | None = None
# Limit the frames per second.
fps: int = 30
# Number of seconds for data recording for each episode.
episode_time_s: int | float = 60
# Number of seconds for resetting the environment after each episode.
reset_time_s: int | float = 60
# Number of episodes to record.
num_episodes: int = 50
# Encode frames in the dataset into video
video: bool = True
# Upload dataset to Hugging Face hub.
push_to_hub: bool = True
# Upload on private repository on the Hugging Face hub.
private: bool = False
# Add tags to your dataset on the hub.
tags: list[str] | None = None
# Number of subprocesses handling the saving of frames as PNG. Set to 0 to use threads only;
# set to ≥1 to use subprocesses, each using threads to write images. The best number of processes
# and threads depends on your system. We recommend 4 threads per camera with 0 processes.
# If fps is unstable, adjust the thread count. If still unstable, try using 1 or more subprocesses.
num_image_writer_processes: int = 0
# Number of threads writing the frames as png images on disk, per camera.
# Too many threads might cause unstable teleoperation fps due to main thread being blocked.
# Not enough threads might cause low camera fps.
num_image_writer_threads_per_camera: int = 4
def __post_init__(self):
if self.single_task is None:
raise ValueError("You need to provide a task as argument in `single_task`.")
@dataclass
class RecordConfig:
robot: RobotConfig
dataset: DatasetRecordConfig
# Whether to control the robot with a teleoperator
teleop: TeleoperatorConfig | None = None
# Whether to control the robot with a policy
policy: PreTrainedConfig | None = None
# Display all cameras on screen
display_data: bool = False
# Use vocal synthesis to read events.
play_sounds: bool = True
# Resume recording on an existing dataset.
resume: bool = False
def __post_init__(self):
if bool(self.teleop) == bool(self.policy):
raise ValueError("Choose either a policy or a teleoperator to control the robot")
# HACK: We parse again the cli args here to get the pretrained path if there was one.
policy_path = parser.get_path_arg("policy")
if policy_path:
cli_overrides = parser.get_cli_overrides("policy")
self.policy = PreTrainedConfig.from_pretrained(policy_path, cli_overrides=cli_overrides)
self.policy.pretrained_path = policy_path
@classmethod
def __get_path_fields__(cls) -> list[str]:
"""This enables the parser to load config from the policy using `--policy.path=local/dir`"""
return ["policy"]
@safe_stop_image_writer
def record_loop(
robot: Robot,
events: dict,
fps: int,
dataset: LeRobotDataset | None = None,
teleop: Teleoperator | None = None,
policy: PreTrainedPolicy | None = None,
control_time_s: int | None = None,
single_task: str | None = None,
display_data: bool = False,
):
if dataset is not None and dataset.fps != fps:
raise ValueError(f"The dataset fps should be equal to requested fps ({dataset.fps} != {fps}).")
# if policy is given it needs cleaning up
if policy is not None:
policy.reset()
timestamp = 0
start_episode_t = time.perf_counter()
while timestamp < control_time_s:
start_loop_t = time.perf_counter()
observation = robot.get_observation()
if policy is not None or dataset is not None:
observation_frame = build_dataset_frame(dataset.features, observation, prefix="observation")
if policy is not None:
action_values = predict_action(
observation_frame,
policy,
get_safe_torch_device(policy.config.device),
policy.config.use_amp,
task=single_task,
robot_type=robot.robot_type,
)
action = {key: action_values[i].item() for i, key in enumerate(robot.action_features)}
else:
action = teleop.get_action()
# Action can eventually be clipped using `max_relative_target`,
# so action actually sent is saved in the dataset.
sent_action = robot.send_action(action)
if dataset is not None:
action_frame = build_dataset_frame(dataset.features, sent_action, prefix="action")
frame = {**observation_frame, **action_frame}
dataset.add_frame(frame, task=single_task)
if display_data:
for obs, val in observation.items():
if isinstance(val, float):
rr.log(f"observation.{obs}", rr.Scalar(val))
elif isinstance(val, np.ndarray):
rr.log(f"observation.{obs}", rr.Image(val), static=True)
for act, val in action.items():
if isinstance(val, float):
rr.log(f"action.{act}", rr.Scalar(val))
dt_s = time.perf_counter() - start_loop_t
busy_wait(1 / fps - dt_s)
timestamp = time.perf_counter() - start_episode_t
if events["exit_early"]:
events["exit_early"] = False
break
@parser.wrap()
def record(cfg: RecordConfig) -> LeRobotDataset:
init_logging()
logging.info(pformat(asdict(cfg)))
if cfg.display_data:
_init_rerun(session_name="recording")
robot = make_robot_from_config(cfg.robot)
teleop = make_teleoperator_from_config(cfg.teleop) if cfg.teleop is not None else None
action_features = hw_to_dataset_features(robot.action_features, "action", cfg.dataset.video)
obs_features = hw_to_dataset_features(robot.observation_features, "observation", cfg.dataset.video)
dataset_features = {**action_features, **obs_features}
if cfg.resume:
dataset = LeRobotDataset(
cfg.dataset.repo_id,
root=cfg.dataset.root,
)
if hasattr(robot, "cameras") and len(robot.cameras) > 0:
dataset.start_image_writer(
num_processes=cfg.dataset.num_image_writer_processes,
num_threads=cfg.dataset.num_image_writer_threads_per_camera * len(robot.cameras),
)
sanity_check_dataset_robot_compatibility(dataset, robot, cfg.dataset.fps, dataset_features)
else:
# Create empty dataset or load existing saved episodes
sanity_check_dataset_name(cfg.dataset.repo_id, cfg.policy)
dataset = LeRobotDataset.create(
cfg.dataset.repo_id,
cfg.dataset.fps,
root=cfg.dataset.root,
robot_type=robot.name,
features=dataset_features,
use_videos=cfg.dataset.video,
image_writer_processes=cfg.dataset.num_image_writer_processes,
image_writer_threads=cfg.dataset.num_image_writer_threads_per_camera * len(robot.cameras),
)
# Load pretrained policy
policy = None if cfg.policy is None else make_policy(cfg.policy, ds_meta=dataset.meta)
robot.connect()
if teleop is not None:
teleop.connect()
listener, events = init_keyboard_listener()
for recorded_episodes in range(cfg.dataset.num_episodes):
log_say(f"Recording episode {dataset.num_episodes}", cfg.play_sounds)
record_loop(
robot=robot,
events=events,
fps=cfg.dataset.fps,
teleop=teleop,
policy=policy,
dataset=dataset,
control_time_s=cfg.dataset.episode_time_s,
single_task=cfg.dataset.single_task,
display_data=cfg.display_data,
)
# Execute a few seconds without recording to give time to manually reset the environment
# Skip reset for the last episode to be recorded
if not events["stop_recording"] and (
(recorded_episodes < cfg.dataset.num_episodes - 1) or events["rerecord_episode"]
):
log_say("Reset the environment", cfg.play_sounds)
record_loop(
robot=robot,
events=events,
fps=cfg.dataset.fps,
teleop=teleop,
control_time_s=cfg.dataset.reset_time_s,
single_task=cfg.dataset.single_task,
display_data=cfg.display_data,
)
if events["rerecord_episode"]:
log_say("Re-record episode", cfg.play_sounds)
events["rerecord_episode"] = False
events["exit_early"] = False
dataset.clear_episode_buffer()
continue
dataset.save_episode()
if events["stop_recording"]:
break
log_say("Stop recording", cfg.play_sounds, blocking=True)
robot.disconnect()
teleop.disconnect()
if not is_headless() and listener is not None:
listener.stop()
if cfg.dataset.push_to_hub:
dataset.push_to_hub(tags=cfg.dataset.tags, private=cfg.dataset.private)
log_say("Exiting", cfg.play_sounds)
return dataset
if __name__ == "__main__":
record()