|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Helper to find the camera devices available in your system. |
|
|
|
Example: |
|
|
|
```shell |
|
python -m lerobot.find_cameras |
|
``` |
|
""" |
|
|
|
|
|
|
|
|
|
import argparse |
|
import concurrent.futures |
|
import logging |
|
import time |
|
from pathlib import Path |
|
from typing import Any, Dict, List |
|
|
|
import numpy as np |
|
from PIL import Image |
|
|
|
from lerobot.common.cameras.configs import ColorMode |
|
from lerobot.common.cameras.opencv.camera_opencv import OpenCVCamera |
|
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig |
|
from lerobot.common.cameras.realsense.camera_realsense import RealSenseCamera |
|
from lerobot.common.cameras.realsense.configuration_realsense import RealSenseCameraConfig |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def find_all_opencv_cameras() -> List[Dict[str, Any]]: |
|
""" |
|
Finds all available OpenCV cameras plugged into the system. |
|
|
|
Returns: |
|
A list of all available OpenCV cameras with their metadata. |
|
""" |
|
all_opencv_cameras_info: List[Dict[str, Any]] = [] |
|
logger.info("Searching for OpenCV cameras...") |
|
try: |
|
opencv_cameras = OpenCVCamera.find_cameras() |
|
for cam_info in opencv_cameras: |
|
all_opencv_cameras_info.append(cam_info) |
|
logger.info(f"Found {len(opencv_cameras)} OpenCV cameras.") |
|
except Exception as e: |
|
logger.error(f"Error finding OpenCV cameras: {e}") |
|
|
|
return all_opencv_cameras_info |
|
|
|
|
|
def find_all_realsense_cameras() -> List[Dict[str, Any]]: |
|
""" |
|
Finds all available RealSense cameras plugged into the system. |
|
|
|
Returns: |
|
A list of all available RealSense cameras with their metadata. |
|
""" |
|
all_realsense_cameras_info: List[Dict[str, Any]] = [] |
|
logger.info("Searching for RealSense cameras...") |
|
try: |
|
realsense_cameras = RealSenseCamera.find_cameras() |
|
for cam_info in realsense_cameras: |
|
all_realsense_cameras_info.append(cam_info) |
|
logger.info(f"Found {len(realsense_cameras)} RealSense cameras.") |
|
except ImportError: |
|
logger.warning("Skipping RealSense camera search: pyrealsense2 library not found or not importable.") |
|
except Exception as e: |
|
logger.error(f"Error finding RealSense cameras: {e}") |
|
|
|
return all_realsense_cameras_info |
|
|
|
|
|
def find_and_print_cameras(camera_type_filter: str | None = None) -> List[Dict[str, Any]]: |
|
""" |
|
Finds available cameras based on an optional filter and prints their information. |
|
|
|
Args: |
|
camera_type_filter: Optional string to filter cameras ("realsense" or "opencv"). |
|
If None, lists all cameras. |
|
|
|
Returns: |
|
A list of all available cameras matching the filter, with their metadata. |
|
""" |
|
all_cameras_info: List[Dict[str, Any]] = [] |
|
|
|
if camera_type_filter: |
|
camera_type_filter = camera_type_filter.lower() |
|
|
|
if camera_type_filter is None or camera_type_filter == "opencv": |
|
all_cameras_info.extend(find_all_opencv_cameras()) |
|
if camera_type_filter is None or camera_type_filter == "realsense": |
|
all_cameras_info.extend(find_all_realsense_cameras()) |
|
|
|
if not all_cameras_info: |
|
if camera_type_filter: |
|
logger.warning(f"No {camera_type_filter} cameras were detected.") |
|
else: |
|
logger.warning("No cameras (OpenCV or RealSense) were detected.") |
|
else: |
|
print("\n--- Detected Cameras ---") |
|
for i, cam_info in enumerate(all_cameras_info): |
|
print(f"Camera #{i}:") |
|
for key, value in cam_info.items(): |
|
if key == "default_stream_profile" and isinstance(value, dict): |
|
print(f" {key.replace('_', ' ').capitalize()}:") |
|
for sub_key, sub_value in value.items(): |
|
print(f" {sub_key.capitalize()}: {sub_value}") |
|
else: |
|
print(f" {key.replace('_', ' ').capitalize()}: {value}") |
|
print("-" * 20) |
|
return all_cameras_info |
|
|
|
|
|
def save_image( |
|
img_array: np.ndarray, |
|
camera_identifier: str | int, |
|
images_dir: Path, |
|
camera_type: str, |
|
): |
|
""" |
|
Saves a single image to disk using Pillow. Handles color conversion if necessary. |
|
""" |
|
try: |
|
img = Image.fromarray(img_array, mode="RGB") |
|
|
|
safe_identifier = str(camera_identifier).replace("/", "_").replace("\\", "_") |
|
filename_prefix = f"{camera_type.lower()}_{safe_identifier}" |
|
filename = f"{filename_prefix}.png" |
|
|
|
path = images_dir / filename |
|
path.parent.mkdir(parents=True, exist_ok=True) |
|
img.save(str(path)) |
|
logger.info(f"Saved image: {path}") |
|
except Exception as e: |
|
logger.error(f"Failed to save image for camera {camera_identifier} (type {camera_type}): {e}") |
|
|
|
|
|
def create_camera_instance(cam_meta: Dict[str, Any]) -> Dict[str, Any] | None: |
|
"""Create and connect to a camera instance based on metadata.""" |
|
cam_type = cam_meta.get("type") |
|
cam_id = cam_meta.get("id") |
|
instance = None |
|
|
|
logger.info(f"Preparing {cam_type} ID {cam_id} with default profile") |
|
|
|
try: |
|
if cam_type == "OpenCV": |
|
cv_config = OpenCVCameraConfig( |
|
index_or_path=cam_id, |
|
color_mode=ColorMode.RGB, |
|
) |
|
instance = OpenCVCamera(cv_config) |
|
elif cam_type == "RealSense": |
|
rs_config = RealSenseCameraConfig( |
|
serial_number_or_name=cam_id, |
|
color_mode=ColorMode.RGB, |
|
) |
|
instance = RealSenseCamera(rs_config) |
|
else: |
|
logger.warning(f"Unknown camera type: {cam_type} for ID {cam_id}. Skipping.") |
|
return None |
|
|
|
if instance: |
|
logger.info(f"Connecting to {cam_type} camera: {cam_id}...") |
|
instance.connect(warmup=False) |
|
return {"instance": instance, "meta": cam_meta} |
|
except Exception as e: |
|
logger.error(f"Failed to connect or configure {cam_type} camera {cam_id}: {e}") |
|
if instance and instance.is_connected: |
|
instance.disconnect() |
|
return None |
|
|
|
|
|
def process_camera_image( |
|
cam_dict: Dict[str, Any], output_dir: Path, current_time: float |
|
) -> concurrent.futures.Future | None: |
|
"""Capture and process an image from a single camera.""" |
|
cam = cam_dict["instance"] |
|
meta = cam_dict["meta"] |
|
cam_type_str = str(meta.get("type", "unknown")) |
|
cam_id_str = str(meta.get("id", "unknown")) |
|
|
|
try: |
|
image_data = cam.read() |
|
|
|
return save_image( |
|
image_data, |
|
cam_id_str, |
|
output_dir, |
|
cam_type_str, |
|
) |
|
except TimeoutError: |
|
logger.warning( |
|
f"Timeout reading from {cam_type_str} camera {cam_id_str} at time {current_time:.2f}s." |
|
) |
|
except Exception as e: |
|
logger.error(f"Error reading from {cam_type_str} camera {cam_id_str}: {e}") |
|
return None |
|
|
|
|
|
def cleanup_cameras(cameras_to_use: List[Dict[str, Any]]): |
|
"""Disconnect all cameras.""" |
|
logger.info(f"Disconnecting {len(cameras_to_use)} cameras...") |
|
for cam_dict in cameras_to_use: |
|
try: |
|
if cam_dict["instance"] and cam_dict["instance"].is_connected: |
|
cam_dict["instance"].disconnect() |
|
except Exception as e: |
|
logger.error(f"Error disconnecting camera {cam_dict['meta'].get('id')}: {e}") |
|
|
|
|
|
def save_images_from_all_cameras( |
|
output_dir: Path, |
|
record_time_s: float = 2.0, |
|
camera_type: str | None = None, |
|
): |
|
""" |
|
Connects to detected cameras (optionally filtered by type) and saves images from each. |
|
Uses default stream profiles for width, height, and FPS. |
|
|
|
Args: |
|
output_dir: Directory to save images. |
|
record_time_s: Duration in seconds to record images. |
|
camera_type: Optional string to filter cameras ("realsense" or "opencv"). |
|
If None, uses all detected cameras. |
|
""" |
|
output_dir.mkdir(parents=True, exist_ok=True) |
|
logger.info(f"Saving images to {output_dir}") |
|
all_camera_metadata = find_and_print_cameras(camera_type_filter=camera_type) |
|
|
|
if not all_camera_metadata: |
|
logger.warning("No cameras detected matching the criteria. Cannot save images.") |
|
return |
|
|
|
cameras_to_use = [] |
|
for cam_meta in all_camera_metadata: |
|
camera_instance = create_camera_instance(cam_meta) |
|
if camera_instance: |
|
cameras_to_use.append(camera_instance) |
|
|
|
if not cameras_to_use: |
|
logger.warning("No cameras could be connected. Aborting image save.") |
|
return |
|
|
|
logger.info(f"Starting image capture for {record_time_s} seconds from {len(cameras_to_use)} cameras.") |
|
start_time = time.perf_counter() |
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=len(cameras_to_use) * 2) as executor: |
|
try: |
|
while time.perf_counter() - start_time < record_time_s: |
|
futures = [] |
|
current_capture_time = time.perf_counter() |
|
|
|
for cam_dict in cameras_to_use: |
|
future = process_camera_image(cam_dict, output_dir, current_capture_time) |
|
if future: |
|
futures.append(future) |
|
|
|
if futures: |
|
concurrent.futures.wait(futures) |
|
|
|
except KeyboardInterrupt: |
|
logger.info("Capture interrupted by user.") |
|
finally: |
|
print("\nFinalizing image saving...") |
|
executor.shutdown(wait=True) |
|
cleanup_cameras(cameras_to_use) |
|
print(f"Image capture finished. Images saved to {output_dir}") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser( |
|
description="Unified camera utility script for listing cameras and capturing images." |
|
) |
|
|
|
parser.add_argument( |
|
"camera_type", |
|
type=str, |
|
nargs="?", |
|
default=None, |
|
choices=["realsense", "opencv"], |
|
help="Specify camera type to capture from (e.g., 'realsense', 'opencv'). Captures from all if omitted.", |
|
) |
|
parser.add_argument( |
|
"--output-dir", |
|
type=Path, |
|
default="outputs/captured_images", |
|
help="Directory to save images. Default: outputs/captured_images", |
|
) |
|
parser.add_argument( |
|
"--record-time-s", |
|
type=float, |
|
default=6.0, |
|
help="Time duration to attempt capturing frames. Default: 6 seconds.", |
|
) |
|
args = parser.parse_args() |
|
save_images_from_all_cameras(**vars(args)) |
|
|