|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Assess the performance of video decoding in various configurations. |
|
|
|
This script will benchmark different video encoding and decoding parameters. |
|
See the provided README.md or run `python benchmark/video/run_video_benchmark.py --help` for usage info. |
|
""" |
|
|
|
import argparse |
|
import datetime as dt |
|
import random |
|
import shutil |
|
from collections import OrderedDict |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
from pathlib import Path |
|
|
|
import einops |
|
import numpy as np |
|
import pandas as pd |
|
import PIL |
|
import torch |
|
from skimage.metrics import mean_squared_error, peak_signal_noise_ratio, structural_similarity |
|
from tqdm import tqdm |
|
|
|
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset |
|
from lerobot.common.datasets.video_utils import ( |
|
decode_video_frames_torchvision, |
|
encode_video_frames, |
|
) |
|
from lerobot.common.utils.benchmark import TimeBenchmark |
|
|
|
BASE_ENCODING = OrderedDict( |
|
[ |
|
("vcodec", "libx264"), |
|
("pix_fmt", "yuv444p"), |
|
("g", 2), |
|
("crf", None), |
|
|
|
|
|
] |
|
) |
|
|
|
|
|
|
|
def parse_int_or_none(value) -> int | None: |
|
if value.lower() == "none": |
|
return None |
|
try: |
|
return int(value) |
|
except ValueError as e: |
|
raise argparse.ArgumentTypeError(f"Invalid int or None: {value}") from e |
|
|
|
|
|
def check_datasets_formats(repo_ids: list) -> None: |
|
for repo_id in repo_ids: |
|
dataset = LeRobotDataset(repo_id) |
|
if len(dataset.meta.video_keys) > 0: |
|
raise ValueError( |
|
f"Use only image dataset for running this benchmark. Video dataset provided: {repo_id}" |
|
) |
|
|
|
|
|
def get_directory_size(directory: Path) -> int: |
|
total_size = 0 |
|
for item in directory.rglob("*"): |
|
if item.is_file(): |
|
total_size += item.stat().st_size |
|
return total_size |
|
|
|
|
|
def load_original_frames(imgs_dir: Path, timestamps: list[float], fps: int) -> torch.Tensor: |
|
frames = [] |
|
for ts in timestamps: |
|
idx = int(ts * fps) |
|
frame = PIL.Image.open(imgs_dir / f"frame_{idx:06d}.png") |
|
frame = torch.from_numpy(np.array(frame)) |
|
frame = frame.type(torch.float32) / 255 |
|
frame = einops.rearrange(frame, "h w c -> c h w") |
|
frames.append(frame) |
|
return torch.stack(frames) |
|
|
|
|
|
def save_decoded_frames( |
|
imgs_dir: Path, save_dir: Path, frames: torch.Tensor, timestamps: list[float], fps: int |
|
) -> None: |
|
if save_dir.exists() and len(list(save_dir.glob("frame_*.png"))) == len(timestamps): |
|
return |
|
|
|
save_dir.mkdir(parents=True, exist_ok=True) |
|
for i, ts in enumerate(timestamps): |
|
idx = int(ts * fps) |
|
frame_hwc = (frames[i].permute((1, 2, 0)) * 255).type(torch.uint8).cpu().numpy() |
|
PIL.Image.fromarray(frame_hwc).save(save_dir / f"frame_{idx:06d}_decoded.png") |
|
shutil.copyfile(imgs_dir / f"frame_{idx:06d}.png", save_dir / f"frame_{idx:06d}_original.png") |
|
|
|
|
|
def save_first_episode(imgs_dir: Path, dataset: LeRobotDataset) -> None: |
|
ep_num_images = dataset.episode_data_index["to"][0].item() |
|
if imgs_dir.exists() and len(list(imgs_dir.glob("frame_*.png"))) == ep_num_images: |
|
return |
|
|
|
imgs_dir.mkdir(parents=True, exist_ok=True) |
|
hf_dataset = dataset.hf_dataset.with_format(None) |
|
|
|
|
|
img_keys = [key for key in hf_dataset.features if key.startswith("observation.image")] |
|
imgs_dataset = hf_dataset.select_columns(img_keys[0]) |
|
|
|
for i, item in enumerate( |
|
tqdm(imgs_dataset, desc=f"saving {dataset.repo_id} first episode images", leave=False) |
|
): |
|
img = item[img_keys[0]] |
|
img.save(str(imgs_dir / f"frame_{i:06d}.png"), quality=100) |
|
|
|
if i >= ep_num_images - 1: |
|
break |
|
|
|
|
|
def sample_timestamps(timestamps_mode: str, ep_num_images: int, fps: int) -> list[float]: |
|
|
|
idx = random.randint(5, ep_num_images - 1) |
|
match timestamps_mode: |
|
case "1_frame": |
|
frame_indexes = [idx] |
|
case "2_frames": |
|
frame_indexes = [idx - 1, idx] |
|
case "2_frames_4_space": |
|
frame_indexes = [idx - 5, idx] |
|
case "6_frames": |
|
frame_indexes = [idx - i for i in range(6)][::-1] |
|
case _: |
|
raise ValueError(timestamps_mode) |
|
|
|
return [idx / fps for idx in frame_indexes] |
|
|
|
|
|
def decode_video_frames( |
|
video_path: str, |
|
timestamps: list[float], |
|
tolerance_s: float, |
|
backend: str, |
|
) -> torch.Tensor: |
|
if backend in ["pyav", "video_reader"]: |
|
return decode_video_frames_torchvision(video_path, timestamps, tolerance_s, backend) |
|
else: |
|
raise NotImplementedError(backend) |
|
|
|
|
|
def benchmark_decoding( |
|
imgs_dir: Path, |
|
video_path: Path, |
|
timestamps_mode: str, |
|
backend: str, |
|
ep_num_images: int, |
|
fps: int, |
|
num_samples: int = 50, |
|
num_workers: int = 4, |
|
save_frames: bool = False, |
|
) -> dict: |
|
def process_sample(sample: int): |
|
time_benchmark = TimeBenchmark() |
|
timestamps = sample_timestamps(timestamps_mode, ep_num_images, fps) |
|
num_frames = len(timestamps) |
|
result = { |
|
"psnr_values": [], |
|
"ssim_values": [], |
|
"mse_values": [], |
|
} |
|
|
|
with time_benchmark: |
|
frames = decode_video_frames(video_path, timestamps=timestamps, tolerance_s=5e-1, backend=backend) |
|
result["load_time_video_ms"] = time_benchmark.result_ms / num_frames |
|
|
|
with time_benchmark: |
|
original_frames = load_original_frames(imgs_dir, timestamps, fps) |
|
result["load_time_images_ms"] = time_benchmark.result_ms / num_frames |
|
|
|
frames_np, original_frames_np = frames.numpy(), original_frames.numpy() |
|
for i in range(num_frames): |
|
result["mse_values"].append(mean_squared_error(original_frames_np[i], frames_np[i])) |
|
result["psnr_values"].append( |
|
peak_signal_noise_ratio(original_frames_np[i], frames_np[i], data_range=1.0) |
|
) |
|
result["ssim_values"].append( |
|
structural_similarity(original_frames_np[i], frames_np[i], data_range=1.0, channel_axis=0) |
|
) |
|
|
|
if save_frames and sample == 0: |
|
save_dir = video_path.with_suffix("") / f"{timestamps_mode}_{backend}" |
|
save_decoded_frames(imgs_dir, save_dir, frames, timestamps, fps) |
|
|
|
return result |
|
|
|
load_times_video_ms = [] |
|
load_times_images_ms = [] |
|
mse_values = [] |
|
psnr_values = [] |
|
ssim_values = [] |
|
|
|
|
|
|
|
|
|
with ThreadPoolExecutor(max_workers=num_workers) as executor: |
|
futures = [executor.submit(process_sample, i) for i in range(num_samples)] |
|
for future in tqdm(as_completed(futures), total=num_samples, desc="samples", leave=False): |
|
result = future.result() |
|
load_times_video_ms.append(result["load_time_video_ms"]) |
|
load_times_images_ms.append(result["load_time_images_ms"]) |
|
psnr_values.extend(result["psnr_values"]) |
|
ssim_values.extend(result["ssim_values"]) |
|
mse_values.extend(result["mse_values"]) |
|
|
|
avg_load_time_video_ms = float(np.array(load_times_video_ms).mean()) |
|
avg_load_time_images_ms = float(np.array(load_times_images_ms).mean()) |
|
video_images_load_time_ratio = avg_load_time_video_ms / avg_load_time_images_ms |
|
|
|
return { |
|
"avg_load_time_video_ms": avg_load_time_video_ms, |
|
"avg_load_time_images_ms": avg_load_time_images_ms, |
|
"video_images_load_time_ratio": video_images_load_time_ratio, |
|
"avg_mse": float(np.mean(mse_values)), |
|
"avg_psnr": float(np.mean(psnr_values)), |
|
"avg_ssim": float(np.mean(ssim_values)), |
|
} |
|
|
|
|
|
def benchmark_encoding_decoding( |
|
dataset: LeRobotDataset, |
|
video_path: Path, |
|
imgs_dir: Path, |
|
encoding_cfg: dict, |
|
decoding_cfg: dict, |
|
num_samples: int, |
|
num_workers: int, |
|
save_frames: bool, |
|
overwrite: bool = False, |
|
seed: int = 1337, |
|
) -> list[dict]: |
|
fps = dataset.fps |
|
|
|
if overwrite or not video_path.is_file(): |
|
tqdm.write(f"encoding {video_path}") |
|
encode_video_frames( |
|
imgs_dir=imgs_dir, |
|
video_path=video_path, |
|
fps=fps, |
|
vcodec=encoding_cfg["vcodec"], |
|
pix_fmt=encoding_cfg["pix_fmt"], |
|
g=encoding_cfg.get("g"), |
|
crf=encoding_cfg.get("crf"), |
|
|
|
overwrite=True, |
|
) |
|
|
|
ep_num_images = dataset.episode_data_index["to"][0].item() |
|
width, height = tuple(dataset[0][dataset.meta.camera_keys[0]].shape[-2:]) |
|
num_pixels = width * height |
|
video_size_bytes = video_path.stat().st_size |
|
images_size_bytes = get_directory_size(imgs_dir) |
|
video_images_size_ratio = video_size_bytes / images_size_bytes |
|
|
|
random.seed(seed) |
|
benchmark_table = [] |
|
for timestamps_mode in tqdm( |
|
decoding_cfg["timestamps_modes"], desc="decodings (timestamps_modes)", leave=False |
|
): |
|
for backend in tqdm(decoding_cfg["backends"], desc="decodings (backends)", leave=False): |
|
benchmark_row = benchmark_decoding( |
|
imgs_dir, |
|
video_path, |
|
timestamps_mode, |
|
backend, |
|
ep_num_images, |
|
fps, |
|
num_samples, |
|
num_workers, |
|
save_frames, |
|
) |
|
benchmark_row.update( |
|
**{ |
|
"repo_id": dataset.repo_id, |
|
"resolution": f"{width} x {height}", |
|
"num_pixels": num_pixels, |
|
"video_size_bytes": video_size_bytes, |
|
"images_size_bytes": images_size_bytes, |
|
"video_images_size_ratio": video_images_size_ratio, |
|
"timestamps_mode": timestamps_mode, |
|
"backend": backend, |
|
}, |
|
**encoding_cfg, |
|
) |
|
benchmark_table.append(benchmark_row) |
|
|
|
return benchmark_table |
|
|
|
|
|
def main( |
|
output_dir: Path, |
|
repo_ids: list[str], |
|
vcodec: list[str], |
|
pix_fmt: list[str], |
|
g: list[int], |
|
crf: list[int], |
|
|
|
timestamps_modes: list[str], |
|
backends: list[str], |
|
num_samples: int, |
|
num_workers: int, |
|
save_frames: bool, |
|
): |
|
check_datasets_formats(repo_ids) |
|
encoding_benchmarks = { |
|
"g": g, |
|
"crf": crf, |
|
|
|
} |
|
decoding_benchmarks = { |
|
"timestamps_modes": timestamps_modes, |
|
"backends": backends, |
|
} |
|
headers = ["repo_id", "resolution", "num_pixels"] |
|
headers += list(BASE_ENCODING.keys()) |
|
headers += [ |
|
"timestamps_mode", |
|
"backend", |
|
"video_size_bytes", |
|
"images_size_bytes", |
|
"video_images_size_ratio", |
|
"avg_load_time_video_ms", |
|
"avg_load_time_images_ms", |
|
"video_images_load_time_ratio", |
|
"avg_mse", |
|
"avg_psnr", |
|
"avg_ssim", |
|
] |
|
file_paths = [] |
|
for video_codec in tqdm(vcodec, desc="encodings (vcodec)"): |
|
for pixel_format in tqdm(pix_fmt, desc="encodings (pix_fmt)", leave=False): |
|
benchmark_table = [] |
|
for repo_id in tqdm(repo_ids, desc="encodings (datasets)", leave=False): |
|
dataset = LeRobotDataset(repo_id) |
|
imgs_dir = output_dir / "images" / dataset.repo_id.replace("/", "_") |
|
|
|
save_first_episode(imgs_dir, dataset) |
|
for key, values in tqdm(encoding_benchmarks.items(), desc="encodings (g, crf)", leave=False): |
|
for value in tqdm(values, desc=f"encodings ({key})", leave=False): |
|
encoding_cfg = BASE_ENCODING.copy() |
|
encoding_cfg["vcodec"] = video_codec |
|
encoding_cfg["pix_fmt"] = pixel_format |
|
encoding_cfg[key] = value |
|
args_path = Path("_".join(str(value) for value in encoding_cfg.values())) |
|
video_path = output_dir / "videos" / args_path / f"{repo_id.replace('/', '_')}.mp4" |
|
benchmark_table += benchmark_encoding_decoding( |
|
dataset, |
|
video_path, |
|
imgs_dir, |
|
encoding_cfg, |
|
decoding_benchmarks, |
|
num_samples, |
|
num_workers, |
|
save_frames, |
|
) |
|
|
|
|
|
benchmark_df = pd.DataFrame(benchmark_table, columns=headers) |
|
now = dt.datetime.now() |
|
csv_path = ( |
|
output_dir |
|
/ f"{now:%Y-%m-%d}_{now:%H-%M-%S}_{video_codec}_{pixel_format}_{num_samples}-samples.csv" |
|
) |
|
benchmark_df.to_csv(csv_path, header=True, index=False) |
|
file_paths.append(csv_path) |
|
del benchmark_df |
|
|
|
|
|
df_list = [pd.read_csv(csv_path) for csv_path in file_paths] |
|
concatenated_df = pd.concat(df_list, ignore_index=True) |
|
concatenated_path = output_dir / f"{now:%Y-%m-%d}_{now:%H-%M-%S}_all_{num_samples}-samples.csv" |
|
concatenated_df.to_csv(concatenated_path, header=True, index=False) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--output-dir", |
|
type=Path, |
|
default=Path("outputs/video_benchmark"), |
|
help="Directory where the video benchmark outputs are written.", |
|
) |
|
parser.add_argument( |
|
"--repo-ids", |
|
type=str, |
|
nargs="*", |
|
default=[ |
|
"lerobot/pusht_image", |
|
"aliberts/aloha_mobile_shrimp_image", |
|
"aliberts/paris_street", |
|
"aliberts/kitchen", |
|
], |
|
help="Datasets repo-ids to test against. First episodes only are used. Must be images.", |
|
) |
|
parser.add_argument( |
|
"--vcodec", |
|
type=str, |
|
nargs="*", |
|
default=["libx264", "hevc", "libsvtav1"], |
|
help="Video codecs to be tested", |
|
) |
|
parser.add_argument( |
|
"--pix-fmt", |
|
type=str, |
|
nargs="*", |
|
default=["yuv444p", "yuv420p"], |
|
help="Pixel formats (chroma subsampling) to be tested", |
|
) |
|
parser.add_argument( |
|
"--g", |
|
type=parse_int_or_none, |
|
nargs="*", |
|
default=[1, 2, 3, 4, 5, 6, 10, 15, 20, 40, 100, None], |
|
help="Group of pictures sizes to be tested.", |
|
) |
|
parser.add_argument( |
|
"--crf", |
|
type=parse_int_or_none, |
|
nargs="*", |
|
default=[0, 5, 10, 15, 20, 25, 30, 40, 50, None], |
|
help="Constant rate factors to be tested.", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
parser.add_argument( |
|
"--timestamps-modes", |
|
type=str, |
|
nargs="*", |
|
default=[ |
|
"1_frame", |
|
"2_frames", |
|
"2_frames_4_space", |
|
"6_frames", |
|
], |
|
help="Timestamps scenarios to be tested.", |
|
) |
|
parser.add_argument( |
|
"--backends", |
|
type=str, |
|
nargs="*", |
|
default=["pyav", "video_reader"], |
|
help="Torchvision decoding backend to be tested.", |
|
) |
|
parser.add_argument( |
|
"--num-samples", |
|
type=int, |
|
default=50, |
|
help="Number of samples for each encoding x decoding config.", |
|
) |
|
parser.add_argument( |
|
"--num-workers", |
|
type=int, |
|
default=10, |
|
help="Number of processes for parallelized sample processing.", |
|
) |
|
parser.add_argument( |
|
"--save-frames", |
|
type=int, |
|
default=0, |
|
help="Whether to save decoded frames or not. Enter a non-zero number for true.", |
|
) |
|
args = parser.parse_args() |
|
main(**vars(args)) |
|
|