Datasets:
File size: 5,371 Bytes
02ff393 c14d122 5ea08c8 c14d122 5ea08c8 c14d122 5ea08c8 c14d122 5ea08c8 ce66300 a3d585a ce66300 a3d585a ce66300 bcff818 c14d122 02ff393 3f94715 02ff393 3f94715 4d931a1 3cffb41 02ff393 c14d122 ce66300 bcff818 02ff393 3cffb41 36e4ab9 8f31780 c14d122 8f31780 baad5e5 8f31780 6be09e3 66c1fc2 baad5e5 6be09e3 8f31780 baad5e5 8f31780 10dba4e 8f31780 10dba4e 8f31780 10dba4e 66c1fc2 83e2fd2 10dba4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
---
dataset_info:
- config_name: Human_3
features:
- name: original_wav
dtype: audio
- name: normalized_wav
dtype: audio
- name: speaker_id
dtype: string
- name: transcription
dtype: string
splits:
- name: train
num_bytes: 554661238.0
num_examples: 907
- name: test
num_bytes: 65929372.0
num_examples: 100
download_size: 601830149
dataset_size: 620590610.0
- config_name: Synthetic
features:
- name: original_wav
dtype: audio
- name: normalized_wav
dtype: audio
- name: speaker_id
dtype: string
- name: transcription
dtype: string
splits:
- name: train
num_bytes: 16298373533.296
num_examples: 20056
- name: test
num_bytes: 1735872207.904
num_examples: 2048
download_size: 15976481639
dataset_size: 18034245741.2
- config_name: default
features:
- name: original_wav
dtype: audio
- name: normalized_wav
dtype: audio
- name: speaker_id
dtype: string
- name: transcription
dtype: string
splits:
- name: train
num_bytes: 17035340160.108
num_examples: 20963
- name: test
num_bytes: 1820617200.704
num_examples: 2148
download_size: 16584190993
dataset_size: 18855957360.812
configs:
- config_name: Human_3
data_files:
- split: train
path: Human_3/train-*
- split: test
path: Human_3/test-*
- config_name: Synthetic
data_files:
- split: train
path: Synthetic/train-*
- split: test
path: Synthetic/test-*
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
license: cc-by-4.0
task_categories:
- text-to-speech
- text-to-audio
- automatic-speech-recognition
language:
- ar
pretty_name: arvoice
size_categories:
- 10K<n<100K
---
<h2 align="center">
<b>ArVoice: A Multi-Speaker Dataset for Arabic Speech Synthesis</b>
</h2>
<p align="center"> Hawau Olamide Toyin, Rufael Marew, Humaid Alblooshi, Samar M. Magdy, Hanan Aldarmaki </p>
<p align="center"> {hawau.toyin, hanan.aldarmaki}@mbzuai.ac.ae </p>
<div style="font-size: 16px; text-align: justify;">
<p>ArVoice is a multi-speaker Modern Standard Arabic (MSA) speech corpus with fully diacritized transcriptions, intended for multi-speaker speech synthesis, and can be useful for other tasks such as speech-based diacritic restoration, voice conversion, and deepfake detection. <br>
ArVoice comprises: (1) professionally recorded audio by 2 male and 2 female voice artists from diacritized transcripts, (2) professionally recorded audio by 1 male and 1 female voice artists from undiacritized transcripts, (3) a modified subset of the
Arabic Speech Corpus, and (4) synthesized speech using commercial TTS systems. The complete corpus consists of a total of 83.52 hours of speech across 11 voices; around 10 hours consist of human voices from 7 speakers. <br> <br>
<strong> This repo consists of only Parts (3), ASC subset, and (4) synthetic subset </strong>; to access the main subset, part (1,2), which consists of six professional speakers, <a href="https://huggingface.co/datasets/MBZUAI/ArVoice/resolve/main/ArVoice%20DUA.pdf"> please sign this agreement</a> and email it to us.
<br><br> If you use the dataset or transcriptions provided in Huggingface, <u>place cite the paper</u>.
</p>
</div>
Usage Example
```python
df = load_dataset("MBZUAI/ArVoice", "Human_3") #data_dir options: Human_3, Synthetic,
print(df)
DatasetDict({
train: Dataset({
features: ['original_wav', 'normalized_wav', 'speaker_id', 'transcription'],
num_rows: 907
})
test: Dataset({
features: ['original_wav', 'normalized_wav', 'speaker_id', 'transcription'],
num_rows: 100
})
})
```
Data Statistics
| Type | Part | Gender | Speaker Origin | Duration (hrs) | Text Source |
|-----------|-----------------|------------|----------------|----------------|------------------------------|
| Human | ArVoice Part 1 | M | Egypt | 1.17 | Tashkeela |
| | | F | Jordan | 1.45 | |
| | | M | Egypt | 1.58 | |
| | | F | Morocco | 1.23 | |
| | ArVoice Part 2 | M | Palestine | 0.93 | Khaleej |
| | | F | Egypt | 0.93 | |
| | ArVoice Part 3 | M | Syria | 2.69 | ASC |
| Synthetic | ArVoice Part 4 | 2×M, 2×F | - | 73.5 | Tashkeela, Khaleej, ASC |
License: [https://creativecommons.org/licenses/by/4.0/](https://creativecommons.org/licenses/by/4.0/)
### Citation
```
@misc{toyin2025arvoicemultispeakerdatasetarabic,
title={ArVoice: A Multi-Speaker Dataset for Arabic Speech Synthesis},
author={Hawau Olamide Toyin and Rufael Marew and Humaid Alblooshi and Samar M. Magdy and Hanan Aldarmaki},
year={2025},
eprint={2505.20506},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.20506},
}
``` |