#!/usr/bin/env python3 """ Analyze git diff token distribution for tangled commits. Purpose: Find token size distribution to optimize LLM input. """ import pandas as pd import numpy as np import tiktoken from pathlib import Path # Constants ENCODING_NAME = "cl100k_base" CSV_FILE = "../data/tangled_ccs_dataset_test.csv" DIFF_COLUMN = "diff" OUTPUT_FILE = "../token_distribution_results.csv" def count_tokens(text: str) -> int: """Count tokens using tiktoken.""" try: encoding = tiktoken.get_encoding(ENCODING_NAME) return len(encoding.encode(text)) except Exception: return len(text) // 4 def get_token_range(token_count: int) -> str: """Get token range label.""" if token_count <= 1024: return "≤1024" elif token_count <= 2048: return "1025-2048" elif token_count <= 4096: return "2049-4096" elif token_count <= 8192: return "4097-8192" elif token_count <= 16384: return "8193-16384" elif token_count <= 32768: return "16385-32768" else: return ">32768" def analyze_token_distribution(df: pd.DataFrame) -> pd.DataFrame: """Analyze token distribution of tangled commits.""" results = [] for idx, row in df.iterrows(): diff_text = row[DIFF_COLUMN] if pd.isna(diff_text): continue token_count = count_tokens(str(diff_text)) token_range = get_token_range(token_count) results.append( { "row_idx": idx, "token_count": token_count, "token_range": token_range, } ) return pd.DataFrame(results) def create_distribution_summary(results_df: pd.DataFrame) -> pd.DataFrame: """Create token distribution summary.""" token_ranges = [ "≤1024", "1025-2048", "2049-4096", "4097-8192", "8193-16384", "16385-32768", ">32768", ] total_count = len(results_df) distribution = results_df["token_range"].value_counts() token_counts = results_df["token_count"].values summary_data = [] for range_label in token_ranges: count = distribution.get(range_label, 0) percentage = (count / total_count) * 100 summary_data.append( { "token_range": range_label, "count": count, "percentage": round(percentage, 1), } ) # Add overall statistics stats = { "total_samples": total_count, "median_tokens": int(np.median(token_counts)), "mean_tokens": int(np.mean(token_counts)), "min_tokens": int(np.min(token_counts)), "max_tokens": int(np.max(token_counts)), } return pd.DataFrame(summary_data), stats def main() -> None: """Main analysis function.""" csv_file = Path(CSV_FILE) output_file = Path(OUTPUT_FILE) if not csv_file.exists(): print(f"Error: CSV file not found at {csv_file}") return print(f"Tangled Commits Token Distribution Analyzer") print(f"Loading dataset from {csv_file}...") try: df = pd.read_csv(csv_file) print(f"Loaded {len(df)} tangled commits") print(f"Using tiktoken {ENCODING_NAME} encoding") print("Analyzing token distribution...") results_df = analyze_token_distribution(df) print(f"Processed {len(results_df)} diffs") print("Creating distribution summary...") summary_df, stats = create_distribution_summary(results_df) # Save detailed results results_df.to_csv(output_file, index=False) print(f"Results saved to {output_file}") # Print summary print("\nToken Distribution Summary:") print("=" * 60) print(f"Total samples: {stats['total_samples']}") print(f"Median tokens: {stats['median_tokens']}") print(f"Mean tokens: {stats['mean_tokens']}") print(f"Min tokens: {stats['min_tokens']}") print(f"Max tokens: {stats['max_tokens']}") print("-" * 60) for _, row in summary_df.iterrows(): print( f"{row['token_range']:>12}: {row['count']:>4} samples ({row['percentage']:>5.1f}%)" ) # Key thresholds le_1024 = summary_df[summary_df["token_range"] == "≤1024"]["percentage"].iloc[0] le_4096 = summary_df[ summary_df["token_range"].isin(["≤1024", "1025-2048", "2049-4096"]) ]["percentage"].sum() le_8192 = summary_df[ summary_df["token_range"].isin( ["≤1024", "1025-2048", "2049-4096", "4097-8192"] ) ]["percentage"].sum() print("-" * 60) print(f"≤1024 tokens: {le_1024:.1f}%") print(f"≤4096 tokens: {le_4096:.1f}%") print(f"≤8192 tokens: {le_8192:.1f}%") except Exception as e: print(f"Error processing file: {e}") import traceback traceback.print_exc() if __name__ == "__main__": main()