#!/usr/bin/env python # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from typing import Callable import pytest import torch from lerobot.datasets.lerobot_dataset import LeRobotDataset from lerobot.utils.buffer import BatchTransition, ReplayBuffer, random_crop_vectorized from tests.fixtures.constants import DUMMY_REPO_ID def state_dims() -> list[str]: return ["observation.image", "observation.state"] @pytest.fixture def replay_buffer() -> ReplayBuffer: return create_empty_replay_buffer() def clone_state(state: dict) -> dict: return {k: v.clone() for k, v in state.items()} def create_empty_replay_buffer( optimize_memory: bool = False, use_drq: bool = False, image_augmentation_function: Callable | None = None, ) -> ReplayBuffer: buffer_capacity = 10 device = "cpu" return ReplayBuffer( buffer_capacity, device, state_dims(), optimize_memory=optimize_memory, use_drq=use_drq, image_augmentation_function=image_augmentation_function, ) def create_random_image() -> torch.Tensor: return torch.rand(3, 84, 84) def create_dummy_transition() -> dict: return { "observation.image": create_random_image(), "action": torch.randn(4), "reward": torch.tensor(1.0), "observation.state": torch.randn( 10, ), "done": torch.tensor(False), "truncated": torch.tensor(False), "complementary_info": {}, } def create_dataset_from_replay_buffer(tmp_path) -> tuple[LeRobotDataset, ReplayBuffer]: dummy_state_1 = create_dummy_state() dummy_action_1 = create_dummy_action() dummy_state_2 = create_dummy_state() dummy_action_2 = create_dummy_action() dummy_state_3 = create_dummy_state() dummy_action_3 = create_dummy_action() dummy_state_4 = create_dummy_state() dummy_action_4 = create_dummy_action() replay_buffer = create_empty_replay_buffer() replay_buffer.add(dummy_state_1, dummy_action_1, 1.0, dummy_state_1, False, False) replay_buffer.add(dummy_state_2, dummy_action_2, 1.0, dummy_state_2, False, False) replay_buffer.add(dummy_state_3, dummy_action_3, 1.0, dummy_state_3, True, True) replay_buffer.add(dummy_state_4, dummy_action_4, 1.0, dummy_state_4, True, True) root = tmp_path / "test" return (replay_buffer.to_lerobot_dataset(DUMMY_REPO_ID, root=root), replay_buffer) def create_dummy_state() -> dict: return { "observation.image": create_random_image(), "observation.state": torch.randn( 10, ), } def get_tensor_memory_consumption(tensor): return tensor.nelement() * tensor.element_size() def get_tensors_memory_consumption(obj, visited_addresses): total_size = 0 address = id(obj) if address in visited_addresses: return 0 visited_addresses.add(address) if isinstance(obj, torch.Tensor): return get_tensor_memory_consumption(obj) elif isinstance(obj, (list, tuple)): for item in obj: total_size += get_tensors_memory_consumption(item, visited_addresses) elif isinstance(obj, dict): for value in obj.values(): total_size += get_tensors_memory_consumption(value, visited_addresses) elif hasattr(obj, "__dict__"): # It's an object, we need to get the size of the attributes for _, attr in vars(obj).items(): total_size += get_tensors_memory_consumption(attr, visited_addresses) return total_size def get_object_memory(obj): # Track visited addresses to avoid infinite loops # and cases when two properties point to the same object visited_addresses = set() # Get the size of the object in bytes total_size = sys.getsizeof(obj) # Get the size of the tensor attributes total_size += get_tensors_memory_consumption(obj, visited_addresses) return total_size def create_dummy_action() -> torch.Tensor: return torch.randn(4) def dict_properties() -> list: return ["state", "next_state"] @pytest.fixture def dummy_state() -> dict: return create_dummy_state() @pytest.fixture def next_dummy_state() -> dict: return create_dummy_state() @pytest.fixture def dummy_action() -> torch.Tensor: return torch.randn(4) def test_empty_buffer_sample_raises_error(replay_buffer): assert len(replay_buffer) == 0, "Replay buffer should be empty." assert replay_buffer.capacity == 10, "Replay buffer capacity should be 10." with pytest.raises(RuntimeError, match="Cannot sample from an empty buffer"): replay_buffer.sample(1) def test_zero_capacity_buffer_raises_error(): with pytest.raises(ValueError, match="Capacity must be greater than 0."): ReplayBuffer(0, "cpu", ["observation", "next_observation"]) def test_add_transition(replay_buffer, dummy_state, dummy_action): replay_buffer.add(dummy_state, dummy_action, 1.0, dummy_state, False, False) assert len(replay_buffer) == 1, "Replay buffer should have one transition after adding." assert torch.equal(replay_buffer.actions[0], dummy_action), ( "Action should be equal to the first transition." ) assert replay_buffer.rewards[0] == 1.0, "Reward should be equal to the first transition." assert not replay_buffer.dones[0], "Done should be False for the first transition." assert not replay_buffer.truncateds[0], "Truncated should be False for the first transition." for dim in state_dims(): assert torch.equal(replay_buffer.states[dim][0], dummy_state[dim]), ( "Observation should be equal to the first transition." ) assert torch.equal(replay_buffer.next_states[dim][0], dummy_state[dim]), ( "Next observation should be equal to the first transition." ) def test_add_over_capacity(): replay_buffer = ReplayBuffer(2, "cpu", ["observation", "next_observation"]) dummy_state_1 = create_dummy_state() dummy_action_1 = create_dummy_action() dummy_state_2 = create_dummy_state() dummy_action_2 = create_dummy_action() dummy_state_3 = create_dummy_state() dummy_action_3 = create_dummy_action() replay_buffer.add(dummy_state_1, dummy_action_1, 1.0, dummy_state_1, False, False) replay_buffer.add(dummy_state_2, dummy_action_2, 1.0, dummy_state_2, False, False) replay_buffer.add(dummy_state_3, dummy_action_3, 1.0, dummy_state_3, True, True) assert len(replay_buffer) == 2, "Replay buffer should have 2 transitions after adding 3." for dim in state_dims(): assert torch.equal(replay_buffer.states[dim][0], dummy_state_3[dim]), ( "Observation should be equal to the first transition." ) assert torch.equal(replay_buffer.next_states[dim][0], dummy_state_3[dim]), ( "Next observation should be equal to the first transition." ) assert torch.equal(replay_buffer.actions[0], dummy_action_3), ( "Action should be equal to the last transition." ) assert replay_buffer.rewards[0] == 1.0, "Reward should be equal to the last transition." assert replay_buffer.dones[0], "Done should be True for the first transition." assert replay_buffer.truncateds[0], "Truncated should be True for the first transition." def test_sample_from_empty_buffer(replay_buffer): with pytest.raises(RuntimeError, match="Cannot sample from an empty buffer"): replay_buffer.sample(1) def test_sample_with_1_transition(replay_buffer, dummy_state, next_dummy_state, dummy_action): replay_buffer.add(dummy_state, dummy_action, 1.0, next_dummy_state, False, False) got_batch_transition = replay_buffer.sample(1) expected_batch_transition = BatchTransition( state=clone_state(dummy_state), action=dummy_action.clone(), reward=1.0, next_state=clone_state(next_dummy_state), done=False, truncated=False, ) for buffer_property in dict_properties(): for k, v in expected_batch_transition[buffer_property].items(): got_state = got_batch_transition[buffer_property][k] assert got_state.shape[0] == 1, f"{k} should have 1 transition." assert got_state.device.type == "cpu", f"{k} should be on cpu." assert torch.equal(got_state[0], v), f"{k} should be equal to the expected batch transition." for key, _value in expected_batch_transition.items(): if key in dict_properties(): continue got_value = got_batch_transition[key] v_tensor = expected_batch_transition[key] if not isinstance(v_tensor, torch.Tensor): v_tensor = torch.tensor(v_tensor) assert got_value.shape[0] == 1, f"{key} should have 1 transition." assert got_value.device.type == "cpu", f"{key} should be on cpu." assert torch.equal(got_value[0], v_tensor), f"{key} should be equal to the expected batch transition." def test_sample_with_batch_bigger_than_buffer_size( replay_buffer, dummy_state, next_dummy_state, dummy_action ): replay_buffer.add(dummy_state, dummy_action, 1.0, next_dummy_state, False, False) got_batch_transition = replay_buffer.sample(10) expected_batch_transition = BatchTransition( state=dummy_state, action=dummy_action, reward=1.0, next_state=next_dummy_state, done=False, truncated=False, ) for buffer_property in dict_properties(): for k in expected_batch_transition[buffer_property]: got_state = got_batch_transition[buffer_property][k] assert got_state.shape[0] == 1, f"{k} should have 1 transition." for key in expected_batch_transition: if key in dict_properties(): continue got_value = got_batch_transition[key] assert got_value.shape[0] == 1, f"{key} should have 1 transition." def test_sample_batch(replay_buffer): dummy_state_1 = create_dummy_state() dummy_action_1 = create_dummy_action() dummy_state_2 = create_dummy_state() dummy_action_2 = create_dummy_action() dummy_state_3 = create_dummy_state() dummy_action_3 = create_dummy_action() dummy_state_4 = create_dummy_state() dummy_action_4 = create_dummy_action() replay_buffer.add(dummy_state_1, dummy_action_1, 1.0, dummy_state_1, False, False) replay_buffer.add(dummy_state_2, dummy_action_2, 2.0, dummy_state_2, False, False) replay_buffer.add(dummy_state_3, dummy_action_3, 3.0, dummy_state_3, True, True) replay_buffer.add(dummy_state_4, dummy_action_4, 4.0, dummy_state_4, True, True) dummy_states = [dummy_state_1, dummy_state_2, dummy_state_3, dummy_state_4] dummy_actions = [dummy_action_1, dummy_action_2, dummy_action_3, dummy_action_4] got_batch_transition = replay_buffer.sample(3) for buffer_property in dict_properties(): for k in got_batch_transition[buffer_property]: got_state = got_batch_transition[buffer_property][k] assert got_state.shape[0] == 3, f"{k} should have 3 transition." for got_state_item in got_state: assert any(torch.equal(got_state_item, dummy_state[k]) for dummy_state in dummy_states), ( f"{k} should be equal to one of the dummy states." ) for got_action_item in got_batch_transition["action"]: assert any(torch.equal(got_action_item, dummy_action) for dummy_action in dummy_actions), ( "Actions should be equal to the dummy actions." ) for k in got_batch_transition: if k in dict_properties() or k == "complementary_info": continue got_value = got_batch_transition[k] assert got_value.shape[0] == 3, f"{k} should have 3 transition." def test_to_lerobot_dataset_with_empty_buffer(replay_buffer): with pytest.raises(ValueError, match="The replay buffer is empty. Cannot convert to a dataset."): replay_buffer.to_lerobot_dataset("dummy_repo") def test_to_lerobot_dataset(tmp_path): ds, buffer = create_dataset_from_replay_buffer(tmp_path) assert len(ds) == len(buffer), "Dataset should have the same size as the Replay Buffer" assert ds.fps == 1, "FPS should be 1" assert ds.repo_id == "dummy/repo", "The dataset should have `dummy/repo` repo id" for dim in state_dims(): assert dim in ds.features assert ds.features[dim]["shape"] == buffer.states[dim][0].shape assert ds.num_episodes == 2 assert ds.num_frames == 4 for j, value in enumerate(ds): print(torch.equal(value["observation.image"], buffer.next_states["observation.image"][j])) for i in range(len(ds)): for feature, value in ds[i].items(): if feature == "action": assert torch.equal(value, buffer.actions[i]) elif feature == "next.reward": assert torch.equal(value, buffer.rewards[i]) elif feature == "next.done": assert torch.equal(value, buffer.dones[i]) elif feature == "observation.image": # Tenssor -> numpy is not precise, so we have some diff there # TODO: Check and fix it torch.testing.assert_close(value, buffer.states["observation.image"][i], rtol=0.3, atol=0.003) elif feature == "observation.state": assert torch.equal(value, buffer.states["observation.state"][i]) def test_from_lerobot_dataset(tmp_path): dummy_state_1 = create_dummy_state() dummy_action_1 = create_dummy_action() dummy_state_2 = create_dummy_state() dummy_action_2 = create_dummy_action() dummy_state_3 = create_dummy_state() dummy_action_3 = create_dummy_action() dummy_state_4 = create_dummy_state() dummy_action_4 = create_dummy_action() replay_buffer = create_empty_replay_buffer() replay_buffer.add(dummy_state_1, dummy_action_1, 1.0, dummy_state_1, False, False) replay_buffer.add(dummy_state_2, dummy_action_2, 1.0, dummy_state_2, False, False) replay_buffer.add(dummy_state_3, dummy_action_3, 1.0, dummy_state_3, True, True) replay_buffer.add(dummy_state_4, dummy_action_4, 1.0, dummy_state_4, True, True) root = tmp_path / "test" ds = replay_buffer.to_lerobot_dataset(DUMMY_REPO_ID, root=root) reconverted_buffer = ReplayBuffer.from_lerobot_dataset( ds, state_keys=list(state_dims()), device="cpu", capacity=replay_buffer.capacity, use_drq=False ) # Check only the part of the buffer that's actually filled with data assert torch.equal( reconverted_buffer.actions[: len(replay_buffer)], replay_buffer.actions[: len(replay_buffer)], ), "Actions from converted buffer should be equal to the original replay buffer." assert torch.equal( reconverted_buffer.rewards[: len(replay_buffer)], replay_buffer.rewards[: len(replay_buffer)] ), "Rewards from converted buffer should be equal to the original replay buffer." assert torch.equal( reconverted_buffer.dones[: len(replay_buffer)], replay_buffer.dones[: len(replay_buffer)] ), "Dones from converted buffer should be equal to the original replay buffer." # Lerobot DS haven't supported truncateds yet expected_truncateds = torch.zeros(len(replay_buffer)).bool() assert torch.equal(reconverted_buffer.truncateds[: len(replay_buffer)], expected_truncateds), ( "Truncateds from converted buffer should be equal False" ) assert torch.equal( replay_buffer.states["observation.state"][: len(replay_buffer)], reconverted_buffer.states["observation.state"][: len(replay_buffer)], ), "State should be the same after converting to dataset and return back" for i in range(4): torch.testing.assert_close( replay_buffer.states["observation.image"][i], reconverted_buffer.states["observation.image"][i], rtol=0.4, atol=0.004, ) # The 2, 3 frames have done flag, so their values will be equal to the current state for i in range(2): # In the current implementation we take the next state from the `states` and ignore `next_states` next_index = (i + 1) % 4 torch.testing.assert_close( replay_buffer.states["observation.image"][next_index], reconverted_buffer.next_states["observation.image"][i], rtol=0.4, atol=0.004, ) for i in range(2, 4): assert torch.equal( replay_buffer.states["observation.state"][i], reconverted_buffer.next_states["observation.state"][i], ) def test_buffer_sample_alignment(): # Initialize buffer buffer = ReplayBuffer(capacity=100, device="cpu", state_keys=["state_value"], storage_device="cpu") # Fill buffer with patterned data for i in range(100): signature = float(i) / 100.0 state = {"state_value": torch.tensor([[signature]]).float()} action = torch.tensor([[2.0 * signature]]).float() reward = 3.0 * signature is_end = (i + 1) % 10 == 0 if is_end: next_state = {"state_value": torch.tensor([[signature]]).float()} done = True else: next_signature = float(i + 1) / 100.0 next_state = {"state_value": torch.tensor([[next_signature]]).float()} done = False buffer.add(state, action, reward, next_state, done, False) # Sample and verify batch = buffer.sample(50) for i in range(50): state_sig = batch["state"]["state_value"][i].item() action_val = batch["action"][i].item() reward_val = batch["reward"][i].item() next_state_sig = batch["next_state"]["state_value"][i].item() is_done = batch["done"][i].item() > 0.5 # Verify relationships assert abs(action_val - 2.0 * state_sig) < 1e-4, ( f"Action {action_val} should be 2x state signature {state_sig}" ) assert abs(reward_val - 3.0 * state_sig) < 1e-4, ( f"Reward {reward_val} should be 3x state signature {state_sig}" ) if is_done: assert abs(next_state_sig - state_sig) < 1e-4, ( f"For done states, next_state {next_state_sig} should equal state {state_sig}" ) else: # Either it's the next sequential state (+0.01) or same state (for episode boundaries) valid_next = ( abs(next_state_sig - state_sig - 0.01) < 1e-4 or abs(next_state_sig - state_sig) < 1e-4 ) assert valid_next, ( f"Next state {next_state_sig} should be either state+0.01 or same as state {state_sig}" ) def test_memory_optimization(): dummy_state_1 = create_dummy_state() dummy_action_1 = create_dummy_action() dummy_state_2 = create_dummy_state() dummy_action_2 = create_dummy_action() dummy_state_3 = create_dummy_state() dummy_action_3 = create_dummy_action() dummy_state_4 = create_dummy_state() dummy_action_4 = create_dummy_action() replay_buffer = create_empty_replay_buffer() replay_buffer.add(dummy_state_1, dummy_action_1, 1.0, dummy_state_2, False, False) replay_buffer.add(dummy_state_2, dummy_action_2, 1.0, dummy_state_3, False, False) replay_buffer.add(dummy_state_3, dummy_action_3, 1.0, dummy_state_4, False, False) replay_buffer.add(dummy_state_4, dummy_action_4, 1.0, dummy_state_4, True, True) optimized_replay_buffer = create_empty_replay_buffer(True) optimized_replay_buffer.add(dummy_state_1, dummy_action_1, 1.0, dummy_state_2, False, False) optimized_replay_buffer.add(dummy_state_2, dummy_action_2, 1.0, dummy_state_3, False, False) optimized_replay_buffer.add(dummy_state_3, dummy_action_3, 1.0, dummy_state_4, False, False) optimized_replay_buffer.add(dummy_state_4, dummy_action_4, 1.0, None, True, True) assert get_object_memory(optimized_replay_buffer) < get_object_memory(replay_buffer), ( "Optimized replay buffer should be smaller than the original replay buffer" ) def test_check_image_augmentations_with_drq_and_dummy_image_augmentation_function(dummy_state, dummy_action): def dummy_image_augmentation_function(x): return torch.ones_like(x) * 10 replay_buffer = create_empty_replay_buffer( use_drq=True, image_augmentation_function=dummy_image_augmentation_function ) replay_buffer.add(dummy_state, dummy_action, 1.0, dummy_state, False, False) sampled_transitions = replay_buffer.sample(1) assert torch.all(sampled_transitions["state"]["observation.image"] == 10), ( "Image augmentations should be applied" ) assert torch.all(sampled_transitions["next_state"]["observation.image"] == 10), ( "Image augmentations should be applied" ) def test_check_image_augmentations_with_drq_and_default_image_augmentation_function( dummy_state, dummy_action ): replay_buffer = create_empty_replay_buffer(use_drq=True) replay_buffer.add(dummy_state, dummy_action, 1.0, dummy_state, False, False) # Let's check that it doesn't fail and shapes are correct sampled_transitions = replay_buffer.sample(1) assert sampled_transitions["state"]["observation.image"].shape == (1, 3, 84, 84) assert sampled_transitions["next_state"]["observation.image"].shape == (1, 3, 84, 84) def test_random_crop_vectorized_basic(): # Create a batch of 2 images with known patterns batch_size, channels, height, width = 2, 3, 10, 8 images = torch.zeros((batch_size, channels, height, width)) # Fill with unique values for testing for b in range(batch_size): images[b] = b + 1 crop_size = (6, 4) # Smaller than original cropped = random_crop_vectorized(images, crop_size) # Check output shape assert cropped.shape == (batch_size, channels, *crop_size) # Check that values are preserved (should be either 1s or 2s for respective batches) assert torch.all(cropped[0] == 1) assert torch.all(cropped[1] == 2) def test_random_crop_vectorized_invalid_size(): images = torch.zeros((2, 3, 10, 8)) # Test crop size larger than image with pytest.raises(ValueError, match="Requested crop size .* is bigger than the image size"): random_crop_vectorized(images, (12, 8)) with pytest.raises(ValueError, match="Requested crop size .* is bigger than the image size"): random_crop_vectorized(images, (10, 10)) def _populate_buffer_for_async_test(capacity: int = 10) -> ReplayBuffer: """Create a small buffer with deterministic 3×128×128 images and 11-D state.""" buffer = ReplayBuffer( capacity=capacity, device="cpu", state_keys=["observation.image", "observation.state"], storage_device="cpu", ) for i in range(capacity): img = torch.ones(3, 128, 128) * i state_vec = torch.arange(11).float() + i state = { "observation.image": img, "observation.state": state_vec, } buffer.add( state=state, action=torch.tensor([0.0]), reward=0.0, next_state=state, done=False, truncated=False, ) return buffer def test_async_iterator_shapes_basic(): buffer = _populate_buffer_for_async_test() batch_size = 2 iterator = buffer.get_iterator(batch_size=batch_size, async_prefetch=True, queue_size=1) batch = next(iterator) images = batch["state"]["observation.image"] states = batch["state"]["observation.state"] assert images.shape == (batch_size, 3, 128, 128) assert states.shape == (batch_size, 11) next_images = batch["next_state"]["observation.image"] next_states = batch["next_state"]["observation.state"] assert next_images.shape == (batch_size, 3, 128, 128) assert next_states.shape == (batch_size, 11) def test_async_iterator_multiple_iterations(): buffer = _populate_buffer_for_async_test() batch_size = 2 iterator = buffer.get_iterator(batch_size=batch_size, async_prefetch=True, queue_size=2) for _ in range(5): batch = next(iterator) images = batch["state"]["observation.image"] states = batch["state"]["observation.state"] assert images.shape == (batch_size, 3, 128, 128) assert states.shape == (batch_size, 11) next_images = batch["next_state"]["observation.image"] next_states = batch["next_state"]["observation.state"] assert next_images.shape == (batch_size, 3, 128, 128) assert next_states.shape == (batch_size, 11) # Ensure iterator can be disposed without blocking del iterator