# Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Example: ```shell python src/lerobot/scripts/server/policy_server.py \ --host=127.0.0.1 \ --port=8080 \ --fps=30 \ --inference_latency=0.033 \ --obs_queue_timeout=1 ``` """ import logging import pickle # nosec import threading import time from concurrent import futures from dataclasses import asdict from pprint import pformat from queue import Empty, Queue import draccus import grpc import torch from lerobot.policies.factory import get_policy_class from lerobot.scripts.server.configs import PolicyServerConfig from lerobot.scripts.server.constants import SUPPORTED_POLICIES from lerobot.scripts.server.helpers import ( FPSTracker, Observation, RemotePolicyConfig, TimedAction, TimedObservation, get_logger, observations_similar, raw_observation_to_observation, receive_bytes_in_chunks, ) from lerobot.transport import ( async_inference_pb2, # type: ignore async_inference_pb2_grpc, # type: ignore ) class PolicyServer(async_inference_pb2_grpc.AsyncInferenceServicer): prefix = "policy_server" logger = get_logger(prefix) def __init__(self, config: PolicyServerConfig): self.config = config self._running_event = threading.Event() # FPS measurement self.fps_tracker = FPSTracker(target_fps=config.fps) self.observation_queue = Queue(maxsize=1) self._predicted_timesteps_lock = threading.Lock() self._predicted_timesteps = set() self.last_processed_obs = None # Attributes will be set by SendPolicyInstructions self.device = None self.policy_type = None self.lerobot_features = None self.actions_per_chunk = None self.policy = None @property def running(self): return self._running_event.is_set() @property def policy_image_features(self): return self.policy.config.image_features def _reset_server(self) -> None: """Flushes server state when new client connects.""" # only running inference on the latest observation received by the server self._running_event.clear() self.observation_queue = Queue(maxsize=1) with self._predicted_timesteps_lock: self._predicted_timesteps = set() def Ready(self, request, context): # noqa: N802 client_id = context.peer() self.logger.info(f"Client {client_id} connected and ready") self._reset_server() self._running_event.set() return async_inference_pb2.Empty() def SendPolicyInstructions(self, request, context): # noqa: N802 """Receive policy instructions from the robot client""" if not self.running: self.logger.warning("Server is not running. Ignoring policy instructions.") return async_inference_pb2.Empty() client_id = context.peer() policy_specs = pickle.loads(request.data) # nosec if not isinstance(policy_specs, RemotePolicyConfig): raise TypeError(f"Policy specs must be a RemotePolicyConfig. Got {type(policy_specs)}") if policy_specs.policy_type not in SUPPORTED_POLICIES: raise ValueError( f"Policy type {policy_specs.policy_type} not supported. " f"Supported policies: {SUPPORTED_POLICIES}" ) self.logger.info( f"Receiving policy instructions from {client_id} | " f"Policy type: {policy_specs.policy_type} | " f"Pretrained name or path: {policy_specs.pretrained_name_or_path} | " f"Actions per chunk: {policy_specs.actions_per_chunk} | " f"Device: {policy_specs.device}" ) self.device = policy_specs.device self.policy_type = policy_specs.policy_type # act, pi0, etc. self.lerobot_features = policy_specs.lerobot_features self.actions_per_chunk = policy_specs.actions_per_chunk policy_class = get_policy_class(self.policy_type) start = time.perf_counter() self.policy = policy_class.from_pretrained(policy_specs.pretrained_name_or_path) self.policy.to(self.device) end = time.perf_counter() self.logger.info(f"Time taken to put policy on {self.device}: {end - start:.4f} seconds") return async_inference_pb2.Empty() def SendObservations(self, request_iterator, context): # noqa: N802 """Receive observations from the robot client""" client_id = context.peer() self.logger.debug(f"Receiving observations from {client_id}") receive_time = time.time() # comparing timestamps so need time.time() start_deserialize = time.perf_counter() received_bytes = receive_bytes_in_chunks( request_iterator, self._running_event, self.logger ) # blocking call while looping over request_iterator timed_observation = pickle.loads(received_bytes) # nosec deserialize_time = time.perf_counter() - start_deserialize self.logger.debug(f"Received observation #{timed_observation.get_timestep()}") obs_timestep = timed_observation.get_timestep() obs_timestamp = timed_observation.get_timestamp() # Calculate FPS metrics fps_metrics = self.fps_tracker.calculate_fps_metrics(obs_timestamp) self.logger.info( f"Received observation #{obs_timestep} | " f"Avg FPS: {fps_metrics['avg_fps']:.2f} | " # fps at which observations are received from client f"Target: {fps_metrics['target_fps']:.2f} | " f"One-way latency: {(receive_time - obs_timestamp) * 1000:.2f}ms" ) self.logger.debug( f"Server timestamp: {receive_time:.6f} | " f"Client timestamp: {obs_timestamp:.6f} | " f"Deserialization time: {deserialize_time:.6f}s" ) if not self._enqueue_observation( timed_observation # wrapping a RawObservation ): self.logger.info(f"Observation #{obs_timestep} has been filtered out") return async_inference_pb2.Empty() def GetActions(self, request, context): # noqa: N802 """Returns actions to the robot client. Actions are sent as a single chunk, containing multiple actions.""" client_id = context.peer() self.logger.debug(f"Client {client_id} connected for action streaming") # Generate action based on the most recent observation and its timestep try: getactions_starts = time.perf_counter() obs = self.observation_queue.get(timeout=self.config.obs_queue_timeout) self.logger.info( f"Running inference for observation #{obs.get_timestep()} (must_go: {obs.must_go})" ) with self._predicted_timesteps_lock: self._predicted_timesteps.add(obs.get_timestep()) start_time = time.perf_counter() action_chunk = self._predict_action_chunk(obs) inference_time = time.perf_counter() - start_time start_time = time.perf_counter() actions_bytes = pickle.dumps(action_chunk) # nosec serialize_time = time.perf_counter() - start_time # Create and return the action chunk actions = async_inference_pb2.Actions(data=actions_bytes) self.logger.info( f"Action chunk #{obs.get_timestep()} generated | " f"Total time: {(inference_time + serialize_time) * 1000:.2f}ms" ) self.logger.debug( f"Action chunk #{obs.get_timestep()} generated | " f"Inference time: {inference_time:.2f}s |" f"Serialize time: {serialize_time:.2f}s |" f"Total time: {inference_time + serialize_time:.2f}s" ) time.sleep( max(0, self.config.inference_latency - max(0, time.perf_counter() - getactions_starts)) ) # sleep controls inference latency return actions except Empty: # no observation added to queue in obs_queue_timeout return async_inference_pb2.Empty() except Exception as e: self.logger.error(f"Error in StreamActions: {e}") return async_inference_pb2.Empty() def _obs_sanity_checks(self, obs: TimedObservation, previous_obs: TimedObservation) -> bool: """Check if the observation is valid to be processed by the policy""" with self._predicted_timesteps_lock: predicted_timesteps = self._predicted_timesteps if obs.get_timestep() in predicted_timesteps: self.logger.debug(f"Skipping observation #{obs.get_timestep()} - Timestep predicted already!") return False elif observations_similar(obs, previous_obs, lerobot_features=self.lerobot_features): self.logger.debug( f"Skipping observation #{obs.get_timestep()} - Observation too similar to last obs predicted!" ) return False else: return True def _enqueue_observation(self, obs: TimedObservation) -> bool: """Enqueue an observation if it must go through processing, otherwise skip it. Observations not in queue are never run through the policy network""" if ( obs.must_go or self.last_processed_obs is None or self._obs_sanity_checks(obs, self.last_processed_obs) ): last_obs = self.last_processed_obs.get_timestep() if self.last_processed_obs else "None" self.logger.debug( f"Enqueuing observation. Must go: {obs.must_go} | Last processed obs: {last_obs}" ) # If queue is full, get the old observation to make room if self.observation_queue.full(): # pops from queue _ = self.observation_queue.get_nowait() self.logger.debug("Observation queue was full, removed oldest observation") # Now put the new observation (never blocks as queue is non-full here) self.observation_queue.put(obs) return True return False def _time_action_chunk(self, t_0: float, action_chunk: list[torch.Tensor], i_0: int) -> list[TimedAction]: """Turn a chunk of actions into a list of TimedAction instances, with the first action corresponding to t_0 and the rest corresponding to t_0 + i*environment_dt for i in range(len(action_chunk)) """ return [ TimedAction(timestamp=t_0 + i * self.config.environment_dt, timestep=i_0 + i, action=action) for i, action in enumerate(action_chunk) ] def _prepare_observation(self, observation_t: TimedObservation) -> Observation: """ Prepare observation, ready for policy inference. E.g.: To keep observation sampling rate high (and network packet tiny) we send int8 [0,255] images from the client and then convert them to float32 [0,1] images here, before running inference. """ # RawObservation from robot.get_observation() - wrong keys, wrong dtype, wrong image shape observation: Observation = raw_observation_to_observation( observation_t.get_observation(), self.lerobot_features, self.policy_image_features, self.device, ) # processed Observation - right keys, right dtype, right image shape return observation def _get_action_chunk(self, observation: dict[str, torch.Tensor]) -> torch.Tensor: """Get an action chunk from the policy. The chunk contains only""" chunk = self.policy.predict_action_chunk(observation) if chunk.ndim != 3: chunk = chunk.unsqueeze(0) # adding batch dimension, now shape is (B, chunk_size, action_dim) return chunk[:, : self.actions_per_chunk, :] def _predict_action_chunk(self, observation_t: TimedObservation) -> list[TimedAction]: """Predict an action chunk based on an observation""" inference_starts = time.perf_counter() """1. Prepare observation""" start_time = time.perf_counter() observation = self._prepare_observation(observation_t) preprocessing_time = time.perf_counter() - start_time self.last_processed_obs: TimedObservation = observation_t """2. Get action chunk""" start_time = time.perf_counter() action_tensor = self._get_action_chunk(observation) inference_time = time.perf_counter() - start_time """3. Post-inference processing""" start_time = time.perf_counter() # Move to CPU before serializing action_tensor = action_tensor.cpu().squeeze(0) action_chunk = self._time_action_chunk( observation_t.get_timestamp(), list(action_tensor), observation_t.get_timestep() ) postprocessing_time = time.perf_counter() - start_time inference_stops = time.perf_counter() self.logger.info( f"Observation {observation_t.get_timestep()} |" f"Inference time: {1000 * (inference_stops - inference_starts):.2f}ms" ) # full-process latency breakdown for debugging purposes self.logger.debug( f"Observation {observation_t.get_timestep()} | " f"Preprocessing time: {1000 * (preprocessing_time - inference_starts):.2f}ms | " f"Inference time: {1000 * (inference_time - preprocessing_time):.2f}ms | " f"Postprocessing time: {1000 * (postprocessing_time - inference_time):.2f}ms | " f"Total time: {1000 * (postprocessing_time - inference_starts):.2f}ms" ) return action_chunk def stop(self): """Stop the server""" self._reset_server() self.logger.info("Server stopping...") @draccus.wrap() def serve(cfg: PolicyServerConfig): """Start the PolicyServer with the given configuration. Args: config: PolicyServerConfig instance. If None, uses default configuration. """ logging.info(pformat(asdict(cfg))) # Create the server instance first policy_server = PolicyServer(cfg) # Setup and start gRPC server server = grpc.server(futures.ThreadPoolExecutor(max_workers=4)) async_inference_pb2_grpc.add_AsyncInferenceServicer_to_server(policy_server, server) server.add_insecure_port(f"{cfg.host}:{cfg.port}") policy_server.logger.info(f"PolicyServer started on {cfg.host}:{cfg.port}") server.start() server.wait_for_termination() policy_server.logger.info("Server terminated") if __name__ == "__main__": serve()