#!/usr/bin/env python # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc from dataclasses import asdict, dataclass, field from pathlib import Path from typing import Any import draccus import torch from safetensors.torch import load_file, save_file from lerobot.constants import ( OPTIMIZER_PARAM_GROUPS, OPTIMIZER_STATE, ) from lerobot.datasets.utils import flatten_dict, unflatten_dict, write_json from lerobot.utils.io_utils import deserialize_json_into_object @dataclass class OptimizerConfig(draccus.ChoiceRegistry, abc.ABC): lr: float weight_decay: float grad_clip_norm: float @property def type(self) -> str: return self.get_choice_name(self.__class__) @classmethod def default_choice_name(cls) -> str | None: return "adam" @abc.abstractmethod def build(self) -> torch.optim.Optimizer | dict[str, torch.optim.Optimizer]: """ Build the optimizer. It can be a single optimizer or a dictionary of optimizers. NOTE: Multiple optimizers are useful when you have different models to optimize. For example, you can have one optimizer for the policy and another one for the value function in reinforcement learning settings. Returns: The optimizer or a dictionary of optimizers. """ raise NotImplementedError @OptimizerConfig.register_subclass("adam") @dataclass class AdamConfig(OptimizerConfig): lr: float = 1e-3 betas: tuple[float, float] = (0.9, 0.999) eps: float = 1e-8 weight_decay: float = 0.0 grad_clip_norm: float = 10.0 def build(self, params: dict) -> torch.optim.Optimizer: kwargs = asdict(self) kwargs.pop("grad_clip_norm") return torch.optim.Adam(params, **kwargs) @OptimizerConfig.register_subclass("adamw") @dataclass class AdamWConfig(OptimizerConfig): lr: float = 1e-3 betas: tuple[float, float] = (0.9, 0.999) eps: float = 1e-8 weight_decay: float = 1e-2 grad_clip_norm: float = 10.0 def build(self, params: dict) -> torch.optim.Optimizer: kwargs = asdict(self) kwargs.pop("grad_clip_norm") return torch.optim.AdamW(params, **kwargs) @OptimizerConfig.register_subclass("sgd") @dataclass class SGDConfig(OptimizerConfig): lr: float = 1e-3 momentum: float = 0.0 dampening: float = 0.0 nesterov: bool = False weight_decay: float = 0.0 grad_clip_norm: float = 10.0 def build(self, params: dict) -> torch.optim.Optimizer: kwargs = asdict(self) kwargs.pop("grad_clip_norm") return torch.optim.SGD(params, **kwargs) @OptimizerConfig.register_subclass("multi_adam") @dataclass class MultiAdamConfig(OptimizerConfig): """Configuration for multiple Adam optimizers with different parameter groups. This creates a dictionary of Adam optimizers, each with its own hyperparameters. Args: lr: Default learning rate (used if not specified for a group) weight_decay: Default weight decay (used if not specified for a group) optimizer_groups: Dictionary mapping parameter group names to their hyperparameters grad_clip_norm: Gradient clipping norm """ lr: float = 1e-3 weight_decay: float = 0.0 grad_clip_norm: float = 10.0 optimizer_groups: dict[str, dict[str, Any]] = field(default_factory=dict) def build(self, params_dict: dict[str, list]) -> dict[str, torch.optim.Optimizer]: """Build multiple Adam optimizers. Args: params_dict: Dictionary mapping parameter group names to lists of parameters The keys should match the keys in optimizer_groups Returns: Dictionary mapping parameter group names to their optimizers """ optimizers = {} for name, params in params_dict.items(): # Get group-specific hyperparameters or use defaults group_config = self.optimizer_groups.get(name, {}) # Create optimizer with merged parameters (defaults + group-specific) optimizer_kwargs = { "lr": group_config.get("lr", self.lr), "betas": group_config.get("betas", (0.9, 0.999)), "eps": group_config.get("eps", 1e-5), "weight_decay": group_config.get("weight_decay", self.weight_decay), } optimizers[name] = torch.optim.Adam(params, **optimizer_kwargs) return optimizers def save_optimizer_state( optimizer: torch.optim.Optimizer | dict[str, torch.optim.Optimizer], save_dir: Path ) -> None: """Save optimizer state to disk. Args: optimizer: Either a single optimizer or a dictionary of optimizers. save_dir: Directory to save the optimizer state. """ if isinstance(optimizer, dict): # Handle dictionary of optimizers for name, opt in optimizer.items(): optimizer_dir = save_dir / name optimizer_dir.mkdir(exist_ok=True, parents=True) _save_single_optimizer_state(opt, optimizer_dir) else: # Handle single optimizer _save_single_optimizer_state(optimizer, save_dir) def _save_single_optimizer_state(optimizer: torch.optim.Optimizer, save_dir: Path) -> None: """Save a single optimizer's state to disk.""" state = optimizer.state_dict() param_groups = state.pop("param_groups") flat_state = flatten_dict(state) save_file(flat_state, save_dir / OPTIMIZER_STATE) write_json(param_groups, save_dir / OPTIMIZER_PARAM_GROUPS) def load_optimizer_state( optimizer: torch.optim.Optimizer | dict[str, torch.optim.Optimizer], save_dir: Path ) -> torch.optim.Optimizer | dict[str, torch.optim.Optimizer]: """Load optimizer state from disk. Args: optimizer: Either a single optimizer or a dictionary of optimizers. save_dir: Directory to load the optimizer state from. Returns: The updated optimizer(s) with loaded state. """ if isinstance(optimizer, dict): # Handle dictionary of optimizers loaded_optimizers = {} for name, opt in optimizer.items(): optimizer_dir = save_dir / name if optimizer_dir.exists(): loaded_optimizers[name] = _load_single_optimizer_state(opt, optimizer_dir) else: loaded_optimizers[name] = opt return loaded_optimizers else: # Handle single optimizer return _load_single_optimizer_state(optimizer, save_dir) def _load_single_optimizer_state(optimizer: torch.optim.Optimizer, save_dir: Path) -> torch.optim.Optimizer: """Load a single optimizer's state from disk.""" current_state_dict = optimizer.state_dict() flat_state = load_file(save_dir / OPTIMIZER_STATE) state = unflatten_dict(flat_state) # Handle case where 'state' key might not exist (for newly created optimizers) if "state" in state: loaded_state_dict = {"state": {int(k): v for k, v in state["state"].items()}} else: loaded_state_dict = {"state": {}} if "param_groups" in current_state_dict: param_groups = deserialize_json_into_object( save_dir / OPTIMIZER_PARAM_GROUPS, current_state_dict["param_groups"] ) loaded_state_dict["param_groups"] = param_groups optimizer.load_state_dict(loaded_state_dict) return optimizer