Datasets:

ArXiv:
hil / tests /rl /test_actor.py
Anteid11's picture
Upload folder using huggingface_hub
7efe9d0 verified
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from concurrent import futures
from unittest.mock import patch
import pytest
import torch
from torch.multiprocessing import Event, Queue
from lerobot.utils.transition import Transition
from tests.utils import require_package
def create_learner_service_stub():
import grpc
from lerobot.transport import services_pb2, services_pb2_grpc
class MockLearnerService(services_pb2_grpc.LearnerServiceServicer):
def __init__(self):
self.ready_call_count = 0
self.should_fail = False
def Ready(self, request, context): # noqa: N802
self.ready_call_count += 1
if self.should_fail:
context.set_code(grpc.StatusCode.UNAVAILABLE)
context.set_details("Service unavailable")
raise grpc.RpcError("Service unavailable")
return services_pb2.Empty()
"""Fixture to start a LearnerService gRPC server and provide a connected stub."""
servicer = MockLearnerService()
# Create a gRPC server and add our servicer to it.
server = grpc.server(futures.ThreadPoolExecutor(max_workers=4))
services_pb2_grpc.add_LearnerServiceServicer_to_server(servicer, server)
port = server.add_insecure_port("[::]:0") # bind to a free port chosen by OS
server.start() # start the server (non-blocking call):contentReference[oaicite:1]{index=1}
# Create a client channel and stub connected to the server's port.
channel = grpc.insecure_channel(f"localhost:{port}")
return services_pb2_grpc.LearnerServiceStub(channel), servicer, channel, server
def close_service_stub(channel, server):
channel.close()
server.stop(None)
@require_package("grpc")
def test_establish_learner_connection_success():
from lerobot.scripts.rl.actor import establish_learner_connection
"""Test successful connection establishment."""
stub, _servicer, channel, server = create_learner_service_stub()
shutdown_event = Event()
# Test successful connection
result = establish_learner_connection(stub, shutdown_event, attempts=5)
assert result is True
close_service_stub(channel, server)
@require_package("grpc")
def test_establish_learner_connection_failure():
from lerobot.scripts.rl.actor import establish_learner_connection
"""Test connection failure."""
stub, servicer, channel, server = create_learner_service_stub()
servicer.should_fail = True
shutdown_event = Event()
# Test failed connection
with patch("time.sleep"): # Speed up the test
result = establish_learner_connection(stub, shutdown_event, attempts=2)
assert result is False
close_service_stub(channel, server)
@require_package("grpc")
def test_push_transitions_to_transport_queue():
from lerobot.scripts.rl.actor import push_transitions_to_transport_queue
from lerobot.transport.utils import bytes_to_transitions
from tests.transport.test_transport_utils import assert_transitions_equal
"""Test pushing transitions to transport queue."""
# Create mock transitions
transitions = []
for i in range(3):
transition = Transition(
state={"observation": torch.randn(3, 64, 64), "state": torch.randn(10)},
action=torch.randn(5),
reward=torch.tensor(1.0 + i),
done=torch.tensor(False),
truncated=torch.tensor(False),
next_state={"observation": torch.randn(3, 64, 64), "state": torch.randn(10)},
complementary_info={"step": torch.tensor(i)},
)
transitions.append(transition)
transitions_queue = Queue()
# Test pushing transitions
push_transitions_to_transport_queue(transitions, transitions_queue)
# Verify the data can be retrieved
serialized_data = transitions_queue.get()
assert isinstance(serialized_data, bytes)
deserialized_transitions = bytes_to_transitions(serialized_data)
assert len(deserialized_transitions) == len(transitions)
for i, deserialized_transition in enumerate(deserialized_transitions):
assert_transitions_equal(deserialized_transition, transitions[i])
@require_package("grpc")
@pytest.mark.timeout(3) # force cross-platform watchdog
def test_transitions_stream():
from lerobot.scripts.rl.actor import transitions_stream
"""Test transitions stream functionality."""
shutdown_event = Event()
transitions_queue = Queue()
# Add test data to queue
test_data = [b"transition_data_1", b"transition_data_2", b"transition_data_3"]
for data in test_data:
transitions_queue.put(data)
# Collect streamed data
streamed_data = []
stream_generator = transitions_stream(shutdown_event, transitions_queue, 0.1)
# Process a few items
for i, message in enumerate(stream_generator):
streamed_data.append(message)
if i >= len(test_data) - 1:
shutdown_event.set()
break
# Verify we got messages
assert len(streamed_data) == len(test_data)
assert streamed_data[0].data == b"transition_data_1"
assert streamed_data[1].data == b"transition_data_2"
assert streamed_data[2].data == b"transition_data_3"
@require_package("grpc")
@pytest.mark.timeout(3) # force cross-platform watchdog
def test_interactions_stream():
from lerobot.scripts.rl.actor import interactions_stream
from lerobot.transport.utils import bytes_to_python_object, python_object_to_bytes
"""Test interactions stream functionality."""
shutdown_event = Event()
interactions_queue = Queue()
# Create test interaction data (similar structure to what would be sent)
test_interactions = [
{"episode_reward": 10.5, "step": 1, "policy_fps": 30.2},
{"episode_reward": 15.2, "step": 2, "policy_fps": 28.7},
{"episode_reward": 8.7, "step": 3, "policy_fps": 29.1},
]
# Serialize the interaction data as it would be in practice
test_data = [
interactions_queue.put(python_object_to_bytes(interaction)) for interaction in test_interactions
]
# Collect streamed data
streamed_data = []
stream_generator = interactions_stream(shutdown_event, interactions_queue, 0.1)
# Process the items
for i, message in enumerate(stream_generator):
streamed_data.append(message)
if i >= len(test_data) - 1:
shutdown_event.set()
break
# Verify we got messages
assert len(streamed_data) == len(test_data)
# Verify the messages can be deserialized back to original data
for i, message in enumerate(streamed_data):
deserialized_interaction = bytes_to_python_object(message.data)
assert deserialized_interaction == test_interactions[i]