|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from concurrent import futures
|
|
from unittest.mock import patch
|
|
|
|
import pytest
|
|
import torch
|
|
from torch.multiprocessing import Event, Queue
|
|
|
|
from lerobot.utils.transition import Transition
|
|
from tests.utils import require_package
|
|
|
|
|
|
def create_learner_service_stub():
|
|
import grpc
|
|
|
|
from lerobot.transport import services_pb2, services_pb2_grpc
|
|
|
|
class MockLearnerService(services_pb2_grpc.LearnerServiceServicer):
|
|
def __init__(self):
|
|
self.ready_call_count = 0
|
|
self.should_fail = False
|
|
|
|
def Ready(self, request, context):
|
|
self.ready_call_count += 1
|
|
if self.should_fail:
|
|
context.set_code(grpc.StatusCode.UNAVAILABLE)
|
|
context.set_details("Service unavailable")
|
|
raise grpc.RpcError("Service unavailable")
|
|
return services_pb2.Empty()
|
|
|
|
"""Fixture to start a LearnerService gRPC server and provide a connected stub."""
|
|
|
|
servicer = MockLearnerService()
|
|
|
|
|
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=4))
|
|
services_pb2_grpc.add_LearnerServiceServicer_to_server(servicer, server)
|
|
port = server.add_insecure_port("[::]:0")
|
|
server.start()
|
|
|
|
|
|
channel = grpc.insecure_channel(f"localhost:{port}")
|
|
return services_pb2_grpc.LearnerServiceStub(channel), servicer, channel, server
|
|
|
|
|
|
def close_service_stub(channel, server):
|
|
channel.close()
|
|
server.stop(None)
|
|
|
|
|
|
@require_package("grpc")
|
|
def test_establish_learner_connection_success():
|
|
from lerobot.scripts.rl.actor import establish_learner_connection
|
|
|
|
"""Test successful connection establishment."""
|
|
stub, _servicer, channel, server = create_learner_service_stub()
|
|
|
|
shutdown_event = Event()
|
|
|
|
|
|
result = establish_learner_connection(stub, shutdown_event, attempts=5)
|
|
|
|
assert result is True
|
|
|
|
close_service_stub(channel, server)
|
|
|
|
|
|
@require_package("grpc")
|
|
def test_establish_learner_connection_failure():
|
|
from lerobot.scripts.rl.actor import establish_learner_connection
|
|
|
|
"""Test connection failure."""
|
|
stub, servicer, channel, server = create_learner_service_stub()
|
|
servicer.should_fail = True
|
|
|
|
shutdown_event = Event()
|
|
|
|
|
|
with patch("time.sleep"):
|
|
result = establish_learner_connection(stub, shutdown_event, attempts=2)
|
|
|
|
assert result is False
|
|
|
|
close_service_stub(channel, server)
|
|
|
|
|
|
@require_package("grpc")
|
|
def test_push_transitions_to_transport_queue():
|
|
from lerobot.scripts.rl.actor import push_transitions_to_transport_queue
|
|
from lerobot.transport.utils import bytes_to_transitions
|
|
from tests.transport.test_transport_utils import assert_transitions_equal
|
|
|
|
"""Test pushing transitions to transport queue."""
|
|
|
|
transitions = []
|
|
for i in range(3):
|
|
transition = Transition(
|
|
state={"observation": torch.randn(3, 64, 64), "state": torch.randn(10)},
|
|
action=torch.randn(5),
|
|
reward=torch.tensor(1.0 + i),
|
|
done=torch.tensor(False),
|
|
truncated=torch.tensor(False),
|
|
next_state={"observation": torch.randn(3, 64, 64), "state": torch.randn(10)},
|
|
complementary_info={"step": torch.tensor(i)},
|
|
)
|
|
transitions.append(transition)
|
|
|
|
transitions_queue = Queue()
|
|
|
|
|
|
push_transitions_to_transport_queue(transitions, transitions_queue)
|
|
|
|
|
|
serialized_data = transitions_queue.get()
|
|
assert isinstance(serialized_data, bytes)
|
|
deserialized_transitions = bytes_to_transitions(serialized_data)
|
|
assert len(deserialized_transitions) == len(transitions)
|
|
for i, deserialized_transition in enumerate(deserialized_transitions):
|
|
assert_transitions_equal(deserialized_transition, transitions[i])
|
|
|
|
|
|
@require_package("grpc")
|
|
@pytest.mark.timeout(3)
|
|
def test_transitions_stream():
|
|
from lerobot.scripts.rl.actor import transitions_stream
|
|
|
|
"""Test transitions stream functionality."""
|
|
shutdown_event = Event()
|
|
transitions_queue = Queue()
|
|
|
|
|
|
test_data = [b"transition_data_1", b"transition_data_2", b"transition_data_3"]
|
|
for data in test_data:
|
|
transitions_queue.put(data)
|
|
|
|
|
|
streamed_data = []
|
|
stream_generator = transitions_stream(shutdown_event, transitions_queue, 0.1)
|
|
|
|
|
|
for i, message in enumerate(stream_generator):
|
|
streamed_data.append(message)
|
|
if i >= len(test_data) - 1:
|
|
shutdown_event.set()
|
|
break
|
|
|
|
|
|
assert len(streamed_data) == len(test_data)
|
|
assert streamed_data[0].data == b"transition_data_1"
|
|
assert streamed_data[1].data == b"transition_data_2"
|
|
assert streamed_data[2].data == b"transition_data_3"
|
|
|
|
|
|
@require_package("grpc")
|
|
@pytest.mark.timeout(3)
|
|
def test_interactions_stream():
|
|
from lerobot.scripts.rl.actor import interactions_stream
|
|
from lerobot.transport.utils import bytes_to_python_object, python_object_to_bytes
|
|
|
|
"""Test interactions stream functionality."""
|
|
shutdown_event = Event()
|
|
interactions_queue = Queue()
|
|
|
|
|
|
test_interactions = [
|
|
{"episode_reward": 10.5, "step": 1, "policy_fps": 30.2},
|
|
{"episode_reward": 15.2, "step": 2, "policy_fps": 28.7},
|
|
{"episode_reward": 8.7, "step": 3, "policy_fps": 29.1},
|
|
]
|
|
|
|
|
|
test_data = [
|
|
interactions_queue.put(python_object_to_bytes(interaction)) for interaction in test_interactions
|
|
]
|
|
|
|
|
|
streamed_data = []
|
|
stream_generator = interactions_stream(shutdown_event, interactions_queue, 0.1)
|
|
|
|
|
|
for i, message in enumerate(stream_generator):
|
|
streamed_data.append(message)
|
|
if i >= len(test_data) - 1:
|
|
shutdown_event.set()
|
|
break
|
|
|
|
|
|
assert len(streamed_data) == len(test_data)
|
|
|
|
|
|
for i, message in enumerate(streamed_data):
|
|
deserialized_interaction = bytes_to_python_object(message.data)
|
|
assert deserialized_interaction == test_interactions[i]
|
|
|