Datasets:

ArXiv:
File size: 1,692 Bytes
7efe9d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#!/usr/bin/env python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from torch.optim import Optimizer
from torch.optim.lr_scheduler import LRScheduler

from lerobot.configs.train import TrainPipelineConfig
from lerobot.policies.pretrained import PreTrainedPolicy


def make_optimizer_and_scheduler(

    cfg: TrainPipelineConfig, policy: PreTrainedPolicy

) -> tuple[Optimizer, LRScheduler | None]:
    """Generates the optimizer and scheduler based on configs.



    Args:

        cfg (TrainPipelineConfig): The training config that contains optimizer and scheduler configs

        policy (PreTrainedPolicy): The policy config from which parameters and presets must be taken from.



    Returns:

        tuple[Optimizer, LRScheduler | None]: The couple (Optimizer, Scheduler). Scheduler can be `None`.

    """
    params = policy.get_optim_params() if cfg.use_policy_training_preset else policy.parameters()
    optimizer = cfg.optimizer.build(params)
    lr_scheduler = cfg.scheduler.build(optimizer, cfg.steps) if cfg.scheduler is not None else None
    return optimizer, lr_scheduler