File size: 17,830 Bytes
236b50b d4d2234 236b50b d4d2234 236b50b d4d2234 236b50b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
"""
featurizers.py
==============
Utility classes for defining *invertible* feature spaces on top of a model’s
hidden-state tensors, together with intervention helpers that operate inside
those spaces.
Key ideas
---------
* **Featurizer** – a lightweight wrapper holding:
• a forward `featurizer` module that maps a tensor **x → (f, error)**
where *error* is the reconstruction residual (useful for lossy
featurizers such as sparse auto-encoders);
• an `inverse_featurizer` that re-assembles the original space
**(f, error) → x̂**.
* **Interventions** – three higher-order factory functions build PyVENE
interventions that work in the featurized space:
- *interchange*
- *collect*
- *mask* (differential binary masking)
All public classes / functions below carry PEP-257-style doc-strings.
"""
from typing import Optional, Tuple
import torch
import pyvene as pv
# --------------------------------------------------------------------------- #
# Basic identity featurizers #
# --------------------------------------------------------------------------- #
class IdentityFeaturizerModule(torch.nn.Module):
"""A no-op featurizer: *x → (x, None)*."""
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, None]:
return x, None
class IdentityInverseFeaturizerModule(torch.nn.Module):
"""Inverse of :class:`IdentityFeaturizerModule`."""
def forward(self, x: torch.Tensor, error: None) -> torch.Tensor: # noqa: D401
return x
# --------------------------------------------------------------------------- #
# High-level Featurizer wrapper #
# --------------------------------------------------------------------------- #
class Featurizer:
"""Container object holding paired featurizer and inverse modules.
Parameters
----------
featurizer :
A `torch.nn.Module` mapping **x → (features, error)**.
inverse_featurizer :
A `torch.nn.Module` mapping **(features, error) → x̂**.
n_features :
Dimensionality of the feature space. **Required** when you intend to
build a *mask* intervention; optional otherwise.
id :
Human-readable identifier used by `__str__` methods of the generated
interventions.
"""
# --------------------------------------------------------------------- #
# Construction / public accessors #
# --------------------------------------------------------------------- #
def __init__(
self,
featurizer: torch.nn.Module = IdentityFeaturizerModule(),
inverse_featurizer: torch.nn.Module = IdentityInverseFeaturizerModule(),
*,
n_features: Optional[int] = None,
id: str = "null",
):
self.featurizer = featurizer
self.inverse_featurizer = inverse_featurizer
self.n_features = n_features
self.id = id
# -------------------- Intervention builders -------------------------- #
def get_interchange_intervention(self):
if not hasattr(self, "_interchange_intervention"):
self._interchange_intervention = build_feature_interchange_intervention(
self.featurizer, self.inverse_featurizer, self.id
)
return self._interchange_intervention
def get_collect_intervention(self):
if not hasattr(self, "_collect_intervention"):
self._collect_intervention = build_feature_collect_intervention(
self.featurizer, self.id
)
return self._collect_intervention
def get_mask_intervention(self):
if self.n_features is None:
raise ValueError(
"`n_features` must be provided on the Featurizer "
"to construct a mask intervention."
)
if not hasattr(self, "_mask_intervention"):
self._mask_intervention = build_feature_mask_intervention(
self.featurizer,
self.inverse_featurizer,
self.n_features,
self.id,
)
return self._mask_intervention
# ------------------------- Convenience I/O --------------------------- #
def featurize(self, x: torch.Tensor):
return self.featurizer(x)
def inverse_featurize(self, x: torch.Tensor, error):
return self.inverse_featurizer(x, error)
# --------------------------------------------------------------------- #
# (De)serialisation helpers #
# --------------------------------------------------------------------- #
def save_modules(self, path: str) -> Tuple[str, str]:
"""Serialise featurizer & inverse to `<path>_{featurizer, inverse}`.
Notes
-----
* **SAE featurizers** are *not* serialisable: a
:class:`NotImplementedError` is raised.
* Existing files will be *silently overwritten*.
"""
featurizer_class = self.featurizer.__class__.__name__
if featurizer_class == "SAEFeaturizerModule":
#SAE featurizers are to be loaded from sae_lens
return None, None
inverse_featurizer_class = self.inverse_featurizer.__class__.__name__
# Extra config needed for Subspace featurizers
additional_config = {}
if featurizer_class == "SubspaceFeaturizerModule":
additional_config["rotation_matrix"] = (
self.featurizer.rotate.weight.detach().clone()
)
additional_config["requires_grad"] = (
self.featurizer.rotate.weight.requires_grad
)
model_info = {
"featurizer_class": featurizer_class,
"inverse_featurizer_class": inverse_featurizer_class,
"n_features": self.n_features,
"additional_config": additional_config,
}
torch.save(
{"model_info": model_info, "state_dict": self.featurizer.state_dict()},
f"{path}_featurizer",
)
torch.save(
{
"model_info": model_info,
"state_dict": self.inverse_featurizer.state_dict(),
},
f"{path}_inverse_featurizer",
)
return f"{path}_featurizer", f"{path}_inverse_featurizer"
@classmethod
def load_modules(cls, path: str) -> "Featurizer":
"""Inverse of :meth:`save_modules`.
Returns
-------
Featurizer
A *new* instance with reconstructed modules and metadata.
"""
featurizer_data = torch.load(f"{path}_featurizer")
inverse_data = torch.load(f"{path}_inverse_featurizer")
model_info = featurizer_data["model_info"]
featurizer_class = model_info["featurizer_class"]
if featurizer_class == "SubspaceFeaturizerModule":
rot = model_info["additional_config"]["rotation_matrix"]
requires_grad = model_info["additional_config"]["requires_grad"]
# Re-build a parametrised orthogonal layer with identical shape.
in_dim, out_dim = rot.shape
rotate_layer = pv.models.layers.LowRankRotateLayer(
in_dim, out_dim, init_orth=False
)
rotate_layer.weight.data.copy_(rot)
rotate_layer = torch.nn.utils.parametrizations.orthogonal(rotate_layer)
rotate_layer.requires_grad_(requires_grad)
featurizer = SubspaceFeaturizerModule(rotate_layer)
inverse = SubspaceInverseFeaturizerModule(rotate_layer)
# Sanity-check weight shape
assert (
featurizer.rotate.weight.shape == rot.shape
), "Rotation-matrix shape mismatch after deserialisation."
elif featurizer_class == "IdentityFeaturizerModule":
featurizer = IdentityFeaturizerModule()
inverse = IdentityInverseFeaturizerModule()
else:
raise ValueError(f"Unknown featurizer class '{featurizer_class}'.")
featurizer.load_state_dict(featurizer_data["state_dict"])
inverse.load_state_dict(inverse_data["state_dict"])
return cls(
featurizer,
inverse,
n_features=model_info["n_features"],
id=model_info.get("featurizer_id", "loaded"),
)
# --------------------------------------------------------------------------- #
# Intervention factory helpers #
# --------------------------------------------------------------------------- #
def build_feature_interchange_intervention(
featurizer: torch.nn.Module,
inverse_featurizer: torch.nn.Module,
featurizer_id: str,
):
"""Return a class implementing PyVENE’s TrainableIntervention."""
class FeatureInterchangeIntervention(
pv.TrainableIntervention, pv.DistributedRepresentationIntervention
):
"""Swap features between *base* and *source* in the featurized space."""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._featurizer = featurizer
self._inverse = inverse_featurizer
def forward(self, base, source, subspaces=None):
f_base, base_err = self._featurizer(base)
f_src, _ = self._featurizer(source)
if subspaces is None or _subspace_is_all_none(subspaces):
f_out = f_src
else:
f_out = pv.models.intervention_utils._do_intervention_by_swap(
f_base,
f_src,
"interchange",
self.interchange_dim,
subspaces,
subspace_partition=self.subspace_partition,
use_fast=self.use_fast,
)
return self._inverse(f_out, base_err).to(base.dtype)
def __str__(self): # noqa: D401
return f"FeatureInterchangeIntervention(id={featurizer_id})"
return FeatureInterchangeIntervention
def build_feature_collect_intervention(
featurizer: torch.nn.Module, featurizer_id: str
):
"""Return a `CollectIntervention` operating in feature space."""
class FeatureCollectIntervention(pv.CollectIntervention):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._featurizer = featurizer
def forward(self, base, source=None, subspaces=None):
f_base, _ = self._featurizer(base)
return pv.models.intervention_utils._do_intervention_by_swap(
f_base,
source,
"collect",
self.interchange_dim,
subspaces,
subspace_partition=self.subspace_partition,
use_fast=self.use_fast,
)
def __str__(self): # noqa: D401
return f"FeatureCollectIntervention(id={featurizer_id})"
return FeatureCollectIntervention
def build_feature_mask_intervention(
featurizer: torch.nn.Module,
inverse_featurizer: torch.nn.Module,
n_features: int,
featurizer_id: str,
):
"""Return a trainable mask intervention."""
class FeatureMaskIntervention(pv.TrainableIntervention):
"""Differential-binary masking in the featurized space."""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._featurizer = featurizer
self._inverse = inverse_featurizer
# Learnable parameters
self.mask = torch.nn.Parameter(torch.zeros(n_features), requires_grad=True)
self.temperature: Optional[torch.Tensor] = None # must be set by user
# -------------------- API helpers -------------------- #
def get_temperature(self) -> torch.Tensor:
if self.temperature is None:
raise ValueError("Temperature has not been set.")
return self.temperature
def set_temperature(self, temp: float | torch.Tensor):
self.temperature = (
torch.as_tensor(temp, dtype=self.mask.dtype).to(self.mask.device)
)
def _nonlinear_transform(self, f: torch.Tensor) -> torch.Tensor:
# You can swap this for a real MLP if desired
return torch.tanh(f)
# ------------------------- forward ------------------- #
def forward(self, base, source, subspaces=None):
if self.temperature is None:
raise ValueError("Cannot run forward without a temperature.")
f_base, base_err = self._featurizer(base)
f_src, _ = self._featurizer(source)
# Align devices / dtypes
mask = self.mask.to(f_base.device)
temp = self.temperature.to(f_base.device)
f_base = f_base.to(mask.dtype)
f_src = f_src.to(mask.dtype)
if self.training:
gate = torch.sigmoid(mask / temp)
else:
gate = (torch.sigmoid(mask) > 0.5).float()
f_out = (1.0 - gate) * f_base + gate * f_src
# === Apply nonlinearity during training only ===
# if self.training:
# f_out = self._nonlinear_transform(f_out)
return self._inverse(f_out.to(base.dtype), base_err).to(base.dtype)
# ---------------- Sparsity regulariser --------------- #
def get_sparsity_loss(self) -> torch.Tensor:
if self.temperature is None:
raise ValueError("Temperature has not been set.")
gate = torch.sigmoid(self.mask / self.temperature)
return torch.norm(gate, p=1)
def __str__(self): # noqa: D401
return f"FeatureMaskIntervention(id={featurizer_id})"
return FeatureMaskIntervention
# --------------------------------------------------------------------------- #
# Concrete featurizer implementations #
# --------------------------------------------------------------------------- #
class SubspaceFeaturizerModule(torch.nn.Module):
"""Linear projector onto an orthogonal *rotation* sub-space."""
def __init__(self, rotate_layer: pv.models.layers.LowRankRotateLayer):
super().__init__()
self.rotate = rotate_layer
def forward(self, x: torch.Tensor):
r = self.rotate.weight.T # (out, in)ᵀ
f = x.to(r.dtype) @ r.T
error = x - (f @ r).to(x.dtype)
return f, error
class SubspaceInverseFeaturizerModule(torch.nn.Module):
"""Inverse of :class:`SubspaceFeaturizerModule`."""
def __init__(self, rotate_layer: pv.models.layers.LowRankRotateLayer):
super().__init__()
self.rotate = rotate_layer
def forward(self, f, error):
r = self.rotate.weight.T
return (f.to(r.dtype) @ r).to(f.dtype) + error.to(f.dtype)
class SubspaceFeaturizer(Featurizer):
"""Orthogonal linear sub-space featurizer."""
def __init__(
self,
*,
shape: Tuple[int, int] | None = None,
rotation_subspace: torch.Tensor | None = None,
trainable: bool = True,
id: str = "subspace",
):
assert (
shape is not None or rotation_subspace is not None
), "Provide either `shape` or `rotation_subspace`."
if shape is not None:
rotate = pv.models.layers.LowRankRotateLayer(*shape, init_orth=True)
else:
shape = rotation_subspace.shape
rotate = pv.models.layers.LowRankRotateLayer(*shape, init_orth=False)
rotate.weight.data.copy_(rotation_subspace)
rotate = torch.nn.utils.parametrizations.orthogonal(rotate)
rotate.requires_grad_(trainable)
super().__init__(
SubspaceFeaturizerModule(rotate),
SubspaceInverseFeaturizerModule(rotate),
n_features=rotate.weight.shape[1],
id=id,
)
class SAEFeaturizerModule(torch.nn.Module):
"""Wrapper around a *Sparse Autoencoder*’s encode() / decode() pair."""
def __init__(self, sae):
super().__init__()
self.sae = sae
def forward(self, x):
features = self.sae.encode(x.to(self.sae.dtype))
error = x - self.sae.decode(features).to(x.dtype)
return features.to(x.dtype), error
class SAEInverseFeaturizerModule(torch.nn.Module):
"""Inverse for :class:`SAEFeaturizerModule`."""
def __init__(self, sae):
super().__init__()
self.sae = sae
def forward(self, features, error):
return (
self.sae.decode(features.to(self.sae.dtype)).to(features.dtype)
+ error.to(features.dtype)
)
class SAEFeaturizer(Featurizer):
"""Featurizer backed by a pre-trained sparse auto-encoder.
Notes
-----
Serialisation is *disabled* for SAE featurizers – saving will raise
``NotImplementedError``.
"""
def __init__(self, sae, *, trainable: bool = False):
sae.requires_grad_(trainable)
super().__init__(
SAEFeaturizerModule(sae),
SAEInverseFeaturizerModule(sae),
n_features=sae.cfg.to_dict()["d_sae"],
id="sae",
)
# --------------------------------------------------------------------------- #
# Utility helpers #
# --------------------------------------------------------------------------- #
def _subspace_is_all_none(subspaces) -> bool:
"""Return ``True`` if *every* element of *subspaces* is ``None``."""
return subspaces is None or all(
inner is None or all(elem is None for elem in inner) for inner in subspaces
)
|