File size: 17,830 Bytes
236b50b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4d2234
 
 
 
236b50b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4d2234
236b50b
d4d2234
 
 
 
 
236b50b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
"""
featurizers.py
==============
Utility classes for defining *invertible* feature spaces on top of a model’s
hidden-state tensors, together with intervention helpers that operate inside
those spaces.

Key ideas
---------

* **Featurizer** – a lightweight wrapper holding:
    • a forward `featurizer` module that maps a tensor **x → (f, error)**  
      where *error* is the reconstruction residual (useful for lossy
      featurizers such as sparse auto-encoders);  
    • an `inverse_featurizer` that re-assembles the original space  
      **(f, error) → x̂**.

* **Interventions** – three higher-order factory functions build PyVENE
  interventions that work in the featurized space:
    - *interchange*
    - *collect*
    - *mask* (differential binary masking)

All public classes / functions below carry PEP-257-style doc-strings.
"""

from typing import Optional, Tuple

import torch
import pyvene as pv


# --------------------------------------------------------------------------- #
#  Basic identity featurizers                                                 #
# --------------------------------------------------------------------------- #
class IdentityFeaturizerModule(torch.nn.Module):
    """A no-op featurizer: *x → (x, None)*."""

    def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, None]:
        return x, None


class IdentityInverseFeaturizerModule(torch.nn.Module):
    """Inverse of :class:`IdentityFeaturizerModule`."""

    def forward(self, x: torch.Tensor, error: None) -> torch.Tensor:  # noqa: D401
        return x


# --------------------------------------------------------------------------- #
#  High-level Featurizer wrapper                                              #
# --------------------------------------------------------------------------- #
class Featurizer:
    """Container object holding paired featurizer and inverse modules.

    Parameters
    ----------
    featurizer :
        A `torch.nn.Module` mapping **x → (features, error)**.
    inverse_featurizer :
        A `torch.nn.Module` mapping **(features, error) → x̂**.
    n_features :
        Dimensionality of the feature space.  **Required** when you intend to
        build a *mask* intervention; optional otherwise.
    id :
        Human-readable identifier used by `__str__` methods of the generated
        interventions.
    """

    # --------------------------------------------------------------------- #
    #  Construction / public accessors                                      #
    # --------------------------------------------------------------------- #
    def __init__(
        self,
        featurizer: torch.nn.Module = IdentityFeaturizerModule(),
        inverse_featurizer: torch.nn.Module = IdentityInverseFeaturizerModule(),
        *,
        n_features: Optional[int] = None,
        id: str = "null",
    ):
        self.featurizer = featurizer
        self.inverse_featurizer = inverse_featurizer
        self.n_features = n_features
        self.id = id

    # -------------------- Intervention builders -------------------------- #
    def get_interchange_intervention(self):
        if not hasattr(self, "_interchange_intervention"):
            self._interchange_intervention = build_feature_interchange_intervention(
                self.featurizer, self.inverse_featurizer, self.id
            )
        return self._interchange_intervention

    def get_collect_intervention(self):
        if not hasattr(self, "_collect_intervention"):
            self._collect_intervention = build_feature_collect_intervention(
                self.featurizer, self.id
            )
        return self._collect_intervention

    def get_mask_intervention(self):
        if self.n_features is None:
            raise ValueError(
                "`n_features` must be provided on the Featurizer "
                "to construct a mask intervention."
            )
        if not hasattr(self, "_mask_intervention"):
            self._mask_intervention = build_feature_mask_intervention(
                self.featurizer,
                self.inverse_featurizer,
                self.n_features,
                self.id,
            )
        return self._mask_intervention

    # ------------------------- Convenience I/O --------------------------- #
    def featurize(self, x: torch.Tensor):
        return self.featurizer(x)

    def inverse_featurize(self, x: torch.Tensor, error):
        return self.inverse_featurizer(x, error)

    # --------------------------------------------------------------------- #
    #  (De)serialisation helpers                                            #
    # --------------------------------------------------------------------- #
    def save_modules(self, path: str) -> Tuple[str, str]:
        """Serialise featurizer & inverse to `<path>_{featurizer, inverse}`.

        Notes
        -----
        * **SAE featurizers** are *not* serialisable: a
          :class:`NotImplementedError` is raised.
        * Existing files will be *silently overwritten*.
        """
        featurizer_class = self.featurizer.__class__.__name__

        if featurizer_class == "SAEFeaturizerModule":
            #SAE featurizers are to be loaded from sae_lens
            return None, None

        inverse_featurizer_class = self.inverse_featurizer.__class__.__name__

        # Extra config needed for Subspace featurizers
        additional_config = {}
        if featurizer_class == "SubspaceFeaturizerModule":
            additional_config["rotation_matrix"] = (
                self.featurizer.rotate.weight.detach().clone()
            )
            additional_config["requires_grad"] = (
                self.featurizer.rotate.weight.requires_grad
            )

        model_info = {
            "featurizer_class": featurizer_class,
            "inverse_featurizer_class": inverse_featurizer_class,
            "n_features": self.n_features,
            "additional_config": additional_config,
        }

        torch.save(
            {"model_info": model_info, "state_dict": self.featurizer.state_dict()},
            f"{path}_featurizer",
        )
        torch.save(
            {
                "model_info": model_info,
                "state_dict": self.inverse_featurizer.state_dict(),
            },
            f"{path}_inverse_featurizer",
        )
        return f"{path}_featurizer", f"{path}_inverse_featurizer"

    @classmethod
    def load_modules(cls, path: str) -> "Featurizer":
        """Inverse of :meth:`save_modules`.

        Returns
        -------
        Featurizer
            A *new* instance with reconstructed modules and metadata.
        """
        featurizer_data = torch.load(f"{path}_featurizer")
        inverse_data = torch.load(f"{path}_inverse_featurizer")

        model_info = featurizer_data["model_info"]
        featurizer_class = model_info["featurizer_class"]

        if featurizer_class == "SubspaceFeaturizerModule":
            rot = model_info["additional_config"]["rotation_matrix"]
            requires_grad = model_info["additional_config"]["requires_grad"]

            # Re-build a parametrised orthogonal layer with identical shape.
            in_dim, out_dim = rot.shape
            rotate_layer = pv.models.layers.LowRankRotateLayer(
                in_dim, out_dim, init_orth=False
            )
            rotate_layer.weight.data.copy_(rot)
            rotate_layer = torch.nn.utils.parametrizations.orthogonal(rotate_layer)
            rotate_layer.requires_grad_(requires_grad)

            featurizer = SubspaceFeaturizerModule(rotate_layer)
            inverse = SubspaceInverseFeaturizerModule(rotate_layer)

            # Sanity-check weight shape
            assert (
                featurizer.rotate.weight.shape == rot.shape
            ), "Rotation-matrix shape mismatch after deserialisation."
        elif featurizer_class == "IdentityFeaturizerModule":
            featurizer = IdentityFeaturizerModule()
            inverse = IdentityInverseFeaturizerModule()
        else:
            raise ValueError(f"Unknown featurizer class '{featurizer_class}'.")

        featurizer.load_state_dict(featurizer_data["state_dict"])
        inverse.load_state_dict(inverse_data["state_dict"])

        return cls(
            featurizer,
            inverse,
            n_features=model_info["n_features"],
            id=model_info.get("featurizer_id", "loaded"),
        )


# --------------------------------------------------------------------------- #
#  Intervention factory helpers                                               #
# --------------------------------------------------------------------------- #
def build_feature_interchange_intervention(
    featurizer: torch.nn.Module,
    inverse_featurizer: torch.nn.Module,
    featurizer_id: str,
):
    """Return a class implementing PyVENE’s TrainableIntervention."""

    class FeatureInterchangeIntervention(
        pv.TrainableIntervention, pv.DistributedRepresentationIntervention
    ):
        """Swap features between *base* and *source* in the featurized space."""

        def __init__(self, **kwargs):
            super().__init__(**kwargs)
            self._featurizer = featurizer
            self._inverse = inverse_featurizer

        def forward(self, base, source, subspaces=None):
            f_base, base_err = self._featurizer(base)
            f_src, _ = self._featurizer(source)

            if subspaces is None or _subspace_is_all_none(subspaces):
                f_out = f_src
            else:
                f_out = pv.models.intervention_utils._do_intervention_by_swap(
                    f_base,
                    f_src,
                    "interchange",
                    self.interchange_dim,
                    subspaces,
                    subspace_partition=self.subspace_partition,
                    use_fast=self.use_fast,
                )
            return self._inverse(f_out, base_err).to(base.dtype)

        def __str__(self):  # noqa: D401
            return f"FeatureInterchangeIntervention(id={featurizer_id})"

    return FeatureInterchangeIntervention


def build_feature_collect_intervention(
    featurizer: torch.nn.Module, featurizer_id: str
):
    """Return a `CollectIntervention` operating in feature space."""

    class FeatureCollectIntervention(pv.CollectIntervention):
        def __init__(self, **kwargs):
            super().__init__(**kwargs)
            self._featurizer = featurizer

        def forward(self, base, source=None, subspaces=None):
            f_base, _ = self._featurizer(base)
            return pv.models.intervention_utils._do_intervention_by_swap(
                f_base,
                source,
                "collect",
                self.interchange_dim,
                subspaces,
                subspace_partition=self.subspace_partition,
                use_fast=self.use_fast,
            )

        def __str__(self):  # noqa: D401
            return f"FeatureCollectIntervention(id={featurizer_id})"

    return FeatureCollectIntervention


def build_feature_mask_intervention(
    featurizer: torch.nn.Module,
    inverse_featurizer: torch.nn.Module,
    n_features: int,
    featurizer_id: str,
):
    """Return a trainable mask intervention."""

    class FeatureMaskIntervention(pv.TrainableIntervention):
        """Differential-binary masking in the featurized space."""

        def __init__(self, **kwargs):
            super().__init__(**kwargs)
            self._featurizer = featurizer
            self._inverse = inverse_featurizer

            # Learnable parameters
            self.mask = torch.nn.Parameter(torch.zeros(n_features), requires_grad=True)
            self.temperature: Optional[torch.Tensor] = None  # must be set by user

        # -------------------- API helpers -------------------- #
        def get_temperature(self) -> torch.Tensor:
            if self.temperature is None:
                raise ValueError("Temperature has not been set.")
            return self.temperature

        def set_temperature(self, temp: float | torch.Tensor):
            self.temperature = (
                torch.as_tensor(temp, dtype=self.mask.dtype).to(self.mask.device)
            )

        def _nonlinear_transform(self, f: torch.Tensor) -> torch.Tensor:
            # You can swap this for a real MLP if desired
            return torch.tanh(f)

        # ------------------------- forward ------------------- #
        def forward(self, base, source, subspaces=None):
            if self.temperature is None:
                raise ValueError("Cannot run forward without a temperature.")

            f_base, base_err = self._featurizer(base)
            f_src, _ = self._featurizer(source)

            # Align devices / dtypes
            mask = self.mask.to(f_base.device)
            temp = self.temperature.to(f_base.device)

            f_base = f_base.to(mask.dtype)
            f_src = f_src.to(mask.dtype)

            if self.training:
                gate = torch.sigmoid(mask / temp)
            else:
                gate = (torch.sigmoid(mask) > 0.5).float()


            f_out = (1.0 - gate) * f_base + gate * f_src

            # === Apply nonlinearity during training only ===
            # if self.training:
            #     f_out = self._nonlinear_transform(f_out)
                
            return self._inverse(f_out.to(base.dtype), base_err).to(base.dtype)

        # ---------------- Sparsity regulariser --------------- #
        def get_sparsity_loss(self) -> torch.Tensor:
            if self.temperature is None:
                raise ValueError("Temperature has not been set.")
            gate = torch.sigmoid(self.mask / self.temperature)
            return torch.norm(gate, p=1)

        def __str__(self):  # noqa: D401
            return f"FeatureMaskIntervention(id={featurizer_id})"

    return FeatureMaskIntervention


# --------------------------------------------------------------------------- #
#  Concrete featurizer implementations                                        #
# --------------------------------------------------------------------------- #
class SubspaceFeaturizerModule(torch.nn.Module):
    """Linear projector onto an orthogonal *rotation* sub-space."""

    def __init__(self, rotate_layer: pv.models.layers.LowRankRotateLayer):
        super().__init__()
        self.rotate = rotate_layer

    def forward(self, x: torch.Tensor):
        r = self.rotate.weight.T  # (out, in)ᵀ
        f = x.to(r.dtype) @ r.T
        error = x - (f @ r).to(x.dtype)
        return f, error


class SubspaceInverseFeaturizerModule(torch.nn.Module):
    """Inverse of :class:`SubspaceFeaturizerModule`."""

    def __init__(self, rotate_layer: pv.models.layers.LowRankRotateLayer):
        super().__init__()
        self.rotate = rotate_layer

    def forward(self, f, error):
        r = self.rotate.weight.T
        return (f.to(r.dtype) @ r).to(f.dtype) + error.to(f.dtype)


class SubspaceFeaturizer(Featurizer):
    """Orthogonal linear sub-space featurizer."""

    def __init__(
        self,
        *,
        shape: Tuple[int, int] | None = None,
        rotation_subspace: torch.Tensor | None = None,
        trainable: bool = True,
        id: str = "subspace",
    ):
        assert (
            shape is not None or rotation_subspace is not None
        ), "Provide either `shape` or `rotation_subspace`."

        if shape is not None:
            rotate = pv.models.layers.LowRankRotateLayer(*shape, init_orth=True)
        else:
            shape = rotation_subspace.shape
            rotate = pv.models.layers.LowRankRotateLayer(*shape, init_orth=False)
            rotate.weight.data.copy_(rotation_subspace)

        rotate = torch.nn.utils.parametrizations.orthogonal(rotate)
        rotate.requires_grad_(trainable)

        super().__init__(
            SubspaceFeaturizerModule(rotate),
            SubspaceInverseFeaturizerModule(rotate),
            n_features=rotate.weight.shape[1],
            id=id,
        )


class SAEFeaturizerModule(torch.nn.Module):
    """Wrapper around a *Sparse Autoencoder*’s encode() / decode() pair."""

    def __init__(self, sae):
        super().__init__()
        self.sae = sae

    def forward(self, x):
        features = self.sae.encode(x.to(self.sae.dtype))
        error = x - self.sae.decode(features).to(x.dtype)
        return features.to(x.dtype), error


class SAEInverseFeaturizerModule(torch.nn.Module):
    """Inverse for :class:`SAEFeaturizerModule`."""

    def __init__(self, sae):
        super().__init__()
        self.sae = sae

    def forward(self, features, error):
        return (
            self.sae.decode(features.to(self.sae.dtype)).to(features.dtype)
            + error.to(features.dtype)
        )


class SAEFeaturizer(Featurizer):
    """Featurizer backed by a pre-trained sparse auto-encoder.

    Notes
    -----
    Serialisation is *disabled* for SAE featurizers – saving will raise
    ``NotImplementedError``.
    """

    def __init__(self, sae, *, trainable: bool = False):
        sae.requires_grad_(trainable)
        super().__init__(
            SAEFeaturizerModule(sae),
            SAEInverseFeaturizerModule(sae),
            n_features=sae.cfg.to_dict()["d_sae"],
            id="sae",
        )


# --------------------------------------------------------------------------- #
#  Utility helpers                                                            #
# --------------------------------------------------------------------------- #
def _subspace_is_all_none(subspaces) -> bool:
    """Return ``True`` if *every* element of *subspaces* is ``None``."""
    return subspaces is None or all(
        inner is None or all(elem is None for elem in inner) for inner in subspaces
    )