chijw nielsr HF Staff commited on
Commit
27eb515
·
verified ·
1 Parent(s): 9269082

Improve model card with comprehensive details and metadata (#1)

Browse files

- Improve model card with comprehensive details and metadata (39a9fa2ae09d7991e6145eb2c689bf4f95e7e9de)


Co-authored-by: Niels Rogge <nielsr@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +133 -4
README.md CHANGED
@@ -1,8 +1,137 @@
1
  ---
2
  license: mit
 
 
3
  ---
4
- # LangScene-X
5
 
6
- - Repository: https://github.com/liuff19/LangScene-X/
7
- - Project Page: https://liuff19.github.io/LangScene-X/
8
- - arXiv: https://arxiv.org/abs/2507.02813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ pipeline_tag: image-to-3d
4
+ library_name: diffusers
5
  ---
 
6
 
7
+ <div align="center">
8
+
9
+ # ✨LangScene-X: Reconstruct Generalizable 3D Language-Embedded Scenes with TriMap Video Diffusion✨
10
+
11
+ <p align="center">
12
+ <a href="https://liuff19.github.io/">Fangfu Liu</a><sup>1</sup>,
13
+ <a href="https://lifuguan.github.io/">Hao Li</a><sup>2</sup>,
14
+ <a href="https://github.com/chijw">Jiawei Chi</a><sup>1</sup>,
15
+ <a href="https://hanyang-21.github.io/">Hanyang Wang</a><sup>1,3</sup>,
16
+ <a href="https://github.com/liuff19/LangScene-X">Minghui Yang</a><sup>3</sup>,
17
+ <a href="https://github.com/liuff19/LangScene-X">Fudong Wang</a><sup>3</sup>,
18
+ <a href="https://duanyueqi.github.io/">Yueqi Duan</a><sup>1</sup>
19
+ <br>
20
+ <sup>1</sup>Tsinghua University, <sup>2</sup>NTU, <sup>3</sup>Ant Group
21
+ </p>
22
+ <h3 align="center">ICCV 2025 🔥</h3>
23
+ <a href="https://arxiv.org/abs/2507.02813"><img src='https://img.shields.io/badge/arXiv-2507.02813-b31b1b.svg'></a> &nbsp;&nbsp;&nbsp;&nbsp;
24
+ <a href="https://liuff19.github.io/LangScene-X"><img src='https://img.shields.io/badge/Project-Page-Green'></a> &nbsp;&nbsp;&nbsp;&nbsp;
25
+ <a href="https://huggingface.co/chijw/LangScene-X"><img src='https://img.shields.io/badge/LangSceneX-huggingface-yellow'></a> &nbsp;&nbsp;&nbsp;&nbsp;
26
+ <a><img src='https://img.shields.io/badge/License-MIT-blue'></a> &nbsp;&nbsp;&nbsp;&nbsp;
27
+
28
+ ![Teaser Visualization](https://github.com/liuff19/LangScene-X/blob/main/assets/teaser.png?raw=true)
29
+ </div>
30
+
31
+ **LangScene-X:** We propose LangScene-X, a unified model that generates RGB, segmentation map, and normal map, enabling to reconstruct 3D field from sparse views input.
32
+
33
+ ## 📄 Paper
34
+ The model was presented in the paper [LangScene-X: Reconstruct Generalizable 3D Language-Embedded Scenes with TriMap Video Diffusion](https://huggingface.co/papers/2507.02813).
35
+
36
+ ## 🔗 Links
37
+ - Repository: [https://github.com/liuff19/LangScene-X/](https://github.com/liuff19/LangScene-X/)
38
+ - Project Page: [https://liuff19.github.io/LangScene-X/](https://liuff19.github.io/LangScene-X/)
39
+ - arXiv: [https://arxiv.org/abs/2507.02813](https://arxiv.org/abs/2507.02813)
40
+
41
+ ## 📖 Abstract
42
+
43
+ Recovering 3D structures with open-vocabulary scene understanding from 2D images is a fundamental but daunting task. Recent developments have achieved this by performing per-scene optimization with embedded language information. However, they heavily rely on the calibrated dense-view reconstruction paradigm, thereby suffering from severe rendering artifacts and implausible semantic synthesis when limited views are available. In this paper, we introduce a novel generative framework, coined LangScene-X, to unify and generate 3D consistent multi-modality information for reconstruction and understanding. Powered by the generative capability of creating more consistent novel observations, we can build generalizable 3D language-embedded scenes from only sparse views. Specifically, we first train a TriMap video diffusion model that can generate appearance (RGBs), geometry (normals), and semantics (segmentation maps) from sparse inputs through progressive knowledge integration. Furthermore, we propose a Language Quantized Compressor (LQC), trained on large-scale image datasets, to efficiently encode language embeddings, enabling cross-scene generalization without per-scene retraining. Finally, we reconstruct the language surface fields by aligning language information onto the surface of 3D scenes, enabling open-ended language queries. Extensive experiments on real-world data demonstrate the superiority of our LangScene-X over state-of-the-art methods in terms of quality and generalizability.
44
+
45
+ ## 📢 News
46
+ - 🔥 [04/07/2025] We release "LangScene-X: Reconstruct Generalizable 3D Language-Embedded Scenes with TriMap Video Diffusion". Check our [project page](https://liuff19.github.io/LangScene-X) and [arXiv paper](https://arxiv.org/abs/2507.02813).
47
+
48
+ ## 🌟 Pipeline
49
+
50
+ ![Pipeline Visualization](https://github.com/liuff19/LangScene-X/blob/main/assets/pipeline.png?raw=true)
51
+
52
+ Pipeline of LangScene-X. Our model is composed of a TriMap Video Diffusion model which generates RGB, segmentation map, and normal map videos, an Auto Encoder that compresses the language feature, and a field constructor that reconstructs 3DGS from the generated videos.
53
+
54
+
55
+ ## 🎨 Video Demos from TriMap Video Diffusion
56
+
57
+ https://github.com/user-attachments/assets/55346d53-eb04-490e-bb70-64555e97e040
58
+
59
+ https://github.com/user-attachments/assets/d6eb28b9-2af8-49a7-bb8b-0d4cba7843a5
60
+
61
+ https://github.com/user-attachments/assets/396f11ef-85dc-41de-882e-e249c25b9961
62
+
63
+ ## ⚙️ Setup
64
+
65
+ ### 1. Clone Repository
66
+ ```bash
67
+ git clone https://github.com/liuff19/LangScene-X.git
68
+ cd LangScene-X
69
+ ```
70
+ ### 2. Environment Setup
71
+
72
+ 1. **Create conda environment**
73
+
74
+ ```bash
75
+ conda create -n langscenex python=3.10 -y
76
+ conda activate langscenex
77
+ ```
78
+ 2. **Install dependencies**
79
+ ```bash
80
+ conda install pytorch torchvision -c pytorch -y
81
+ pip install -e field_construction/submodules/simple-knn
82
+ pip install -e field_construction/submodules/diff-langsurf-rasterizer
83
+ pip install -e auto-seg/submodules/segment-anything-1
84
+ pip install -e auto-seg/submodules/segment-anything-2
85
+ pip install -r requirements.txt
86
+ ```
87
+
88
+ ### 3. Model Checkpoints
89
+ The checkpoints of SAM, SAM2 and fine-tuned CogVideoX can be downloaded from our [huggingface repository](https://huggingface.co/chijw/LangScene-X).
90
+
91
+ ## 💻Running
92
+
93
+ ### Quick Start
94
+ You can start quickly by running the following scripts:
95
+ ```bash
96
+ chmod +x quick_start.sh
97
+ ./quick_start.sh <first_rgb_image_path> <last_rgb_image_path>
98
+ ```
99
+ ### Render
100
+ Run the following command to render from the reconstructed 3DGS field:
101
+ ```bash
102
+ python entry_point.py \
103
+ pipeline.rgb_video_path="does/not/matter" \
104
+ pipeline.normal_video_path="does/not/matter" \
105
+ pipeline.seg_video_path="does/not/matter" \
106
+ pipeline.data_path="does/not/matter" \
107
+ gaussian.dataset.source_path="does/not/matter" \
108
+ gaussian.dataset.model_path="output/path" \
109
+ pipeline.selection=False \
110
+ gaussian.opt.max_geo_iter=1500 \
111
+ gaussian.opt.normal_optim=True \
112
+ gaussian.opt.optim_pose=True \
113
+ pipeline.skip_video_process=True \
114
+ pipeline.skip_lang_feature_extraction=True \
115
+ pipeline.mode="render"
116
+ ```
117
+ You can also configurate by editting `configs/field_construction.yaml`.
118
+
119
+ ## 🔗Acknowledgement
120
+
121
+ We are thankful for the following great works when implementing LangScene-X:
122
+
123
+ - [CogVideoX](https://github.com/THUDM/CogVideo), [CogvideX-Interpolation](https://github.com/feizc/CogvideX-Interpolation), [LangSplat](https://github.com/minghanqin/LangSplat), [LangSurf](https://github.com/lifuguan/LangSurf), [VGGT](https://github.com/facebookresearch/vggt), [3DGS](https://github.com/graphdeco-inria/gaussian-splatting), [SAM2](https://github.com/facebookresearch/sam2)
124
+
125
+ ## 📚Citation
126
+
127
+ ```bibtex
128
+ @misc{liu2025langscenexreconstructgeneralizable3d,
129
+ title={LangScene-X: Reconstruct Generalizable 3D Language-Embedded Scenes with TriMap Video Diffusion},
130
+ author={Fangfu Liu and Hao Li and Jiawei Chi and Hanyang Wang and Minghui Yang and Fudong Wang and Yueqi Duan},
131
+ year={2025},
132
+ eprint={2507.02813},
133
+ archivePrefix={arXiv},
134
+ primaryClass={cs.CV},
135
+ url={https://arxiv.org/abs/2507.02813},
136
+ }
137
+ ```