Improve model card with comprehensive details and metadata (#1)
Browse files- Improve model card with comprehensive details and metadata (39a9fa2ae09d7991e6145eb2c689bf4f95e7e9de)
Co-authored-by: Niels Rogge <nielsr@users.noreply.huggingface.co>
README.md
CHANGED
@@ -1,8 +1,137 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
3 |
---
|
4 |
-
# LangScene-X
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
pipeline_tag: image-to-3d
|
4 |
+
library_name: diffusers
|
5 |
---
|
|
|
6 |
|
7 |
+
<div align="center">
|
8 |
+
|
9 |
+
# ✨LangScene-X: Reconstruct Generalizable 3D Language-Embedded Scenes with TriMap Video Diffusion✨
|
10 |
+
|
11 |
+
<p align="center">
|
12 |
+
<a href="https://liuff19.github.io/">Fangfu Liu</a><sup>1</sup>,
|
13 |
+
<a href="https://lifuguan.github.io/">Hao Li</a><sup>2</sup>,
|
14 |
+
<a href="https://github.com/chijw">Jiawei Chi</a><sup>1</sup>,
|
15 |
+
<a href="https://hanyang-21.github.io/">Hanyang Wang</a><sup>1,3</sup>,
|
16 |
+
<a href="https://github.com/liuff19/LangScene-X">Minghui Yang</a><sup>3</sup>,
|
17 |
+
<a href="https://github.com/liuff19/LangScene-X">Fudong Wang</a><sup>3</sup>,
|
18 |
+
<a href="https://duanyueqi.github.io/">Yueqi Duan</a><sup>1</sup>
|
19 |
+
<br>
|
20 |
+
<sup>1</sup>Tsinghua University, <sup>2</sup>NTU, <sup>3</sup>Ant Group
|
21 |
+
</p>
|
22 |
+
<h3 align="center">ICCV 2025 🔥</h3>
|
23 |
+
<a href="https://arxiv.org/abs/2507.02813"><img src='https://img.shields.io/badge/arXiv-2507.02813-b31b1b.svg'></a>
|
24 |
+
<a href="https://liuff19.github.io/LangScene-X"><img src='https://img.shields.io/badge/Project-Page-Green'></a>
|
25 |
+
<a href="https://huggingface.co/chijw/LangScene-X"><img src='https://img.shields.io/badge/LangSceneX-huggingface-yellow'></a>
|
26 |
+
<a><img src='https://img.shields.io/badge/License-MIT-blue'></a>
|
27 |
+
|
28 |
+

|
29 |
+
</div>
|
30 |
+
|
31 |
+
**LangScene-X:** We propose LangScene-X, a unified model that generates RGB, segmentation map, and normal map, enabling to reconstruct 3D field from sparse views input.
|
32 |
+
|
33 |
+
## 📄 Paper
|
34 |
+
The model was presented in the paper [LangScene-X: Reconstruct Generalizable 3D Language-Embedded Scenes with TriMap Video Diffusion](https://huggingface.co/papers/2507.02813).
|
35 |
+
|
36 |
+
## 🔗 Links
|
37 |
+
- Repository: [https://github.com/liuff19/LangScene-X/](https://github.com/liuff19/LangScene-X/)
|
38 |
+
- Project Page: [https://liuff19.github.io/LangScene-X/](https://liuff19.github.io/LangScene-X/)
|
39 |
+
- arXiv: [https://arxiv.org/abs/2507.02813](https://arxiv.org/abs/2507.02813)
|
40 |
+
|
41 |
+
## 📖 Abstract
|
42 |
+
|
43 |
+
Recovering 3D structures with open-vocabulary scene understanding from 2D images is a fundamental but daunting task. Recent developments have achieved this by performing per-scene optimization with embedded language information. However, they heavily rely on the calibrated dense-view reconstruction paradigm, thereby suffering from severe rendering artifacts and implausible semantic synthesis when limited views are available. In this paper, we introduce a novel generative framework, coined LangScene-X, to unify and generate 3D consistent multi-modality information for reconstruction and understanding. Powered by the generative capability of creating more consistent novel observations, we can build generalizable 3D language-embedded scenes from only sparse views. Specifically, we first train a TriMap video diffusion model that can generate appearance (RGBs), geometry (normals), and semantics (segmentation maps) from sparse inputs through progressive knowledge integration. Furthermore, we propose a Language Quantized Compressor (LQC), trained on large-scale image datasets, to efficiently encode language embeddings, enabling cross-scene generalization without per-scene retraining. Finally, we reconstruct the language surface fields by aligning language information onto the surface of 3D scenes, enabling open-ended language queries. Extensive experiments on real-world data demonstrate the superiority of our LangScene-X over state-of-the-art methods in terms of quality and generalizability.
|
44 |
+
|
45 |
+
## 📢 News
|
46 |
+
- 🔥 [04/07/2025] We release "LangScene-X: Reconstruct Generalizable 3D Language-Embedded Scenes with TriMap Video Diffusion". Check our [project page](https://liuff19.github.io/LangScene-X) and [arXiv paper](https://arxiv.org/abs/2507.02813).
|
47 |
+
|
48 |
+
## 🌟 Pipeline
|
49 |
+
|
50 |
+

|
51 |
+
|
52 |
+
Pipeline of LangScene-X. Our model is composed of a TriMap Video Diffusion model which generates RGB, segmentation map, and normal map videos, an Auto Encoder that compresses the language feature, and a field constructor that reconstructs 3DGS from the generated videos.
|
53 |
+
|
54 |
+
|
55 |
+
## 🎨 Video Demos from TriMap Video Diffusion
|
56 |
+
|
57 |
+
https://github.com/user-attachments/assets/55346d53-eb04-490e-bb70-64555e97e040
|
58 |
+
|
59 |
+
https://github.com/user-attachments/assets/d6eb28b9-2af8-49a7-bb8b-0d4cba7843a5
|
60 |
+
|
61 |
+
https://github.com/user-attachments/assets/396f11ef-85dc-41de-882e-e249c25b9961
|
62 |
+
|
63 |
+
## ⚙️ Setup
|
64 |
+
|
65 |
+
### 1. Clone Repository
|
66 |
+
```bash
|
67 |
+
git clone https://github.com/liuff19/LangScene-X.git
|
68 |
+
cd LangScene-X
|
69 |
+
```
|
70 |
+
### 2. Environment Setup
|
71 |
+
|
72 |
+
1. **Create conda environment**
|
73 |
+
|
74 |
+
```bash
|
75 |
+
conda create -n langscenex python=3.10 -y
|
76 |
+
conda activate langscenex
|
77 |
+
```
|
78 |
+
2. **Install dependencies**
|
79 |
+
```bash
|
80 |
+
conda install pytorch torchvision -c pytorch -y
|
81 |
+
pip install -e field_construction/submodules/simple-knn
|
82 |
+
pip install -e field_construction/submodules/diff-langsurf-rasterizer
|
83 |
+
pip install -e auto-seg/submodules/segment-anything-1
|
84 |
+
pip install -e auto-seg/submodules/segment-anything-2
|
85 |
+
pip install -r requirements.txt
|
86 |
+
```
|
87 |
+
|
88 |
+
### 3. Model Checkpoints
|
89 |
+
The checkpoints of SAM, SAM2 and fine-tuned CogVideoX can be downloaded from our [huggingface repository](https://huggingface.co/chijw/LangScene-X).
|
90 |
+
|
91 |
+
## 💻Running
|
92 |
+
|
93 |
+
### Quick Start
|
94 |
+
You can start quickly by running the following scripts:
|
95 |
+
```bash
|
96 |
+
chmod +x quick_start.sh
|
97 |
+
./quick_start.sh <first_rgb_image_path> <last_rgb_image_path>
|
98 |
+
```
|
99 |
+
### Render
|
100 |
+
Run the following command to render from the reconstructed 3DGS field:
|
101 |
+
```bash
|
102 |
+
python entry_point.py \
|
103 |
+
pipeline.rgb_video_path="does/not/matter" \
|
104 |
+
pipeline.normal_video_path="does/not/matter" \
|
105 |
+
pipeline.seg_video_path="does/not/matter" \
|
106 |
+
pipeline.data_path="does/not/matter" \
|
107 |
+
gaussian.dataset.source_path="does/not/matter" \
|
108 |
+
gaussian.dataset.model_path="output/path" \
|
109 |
+
pipeline.selection=False \
|
110 |
+
gaussian.opt.max_geo_iter=1500 \
|
111 |
+
gaussian.opt.normal_optim=True \
|
112 |
+
gaussian.opt.optim_pose=True \
|
113 |
+
pipeline.skip_video_process=True \
|
114 |
+
pipeline.skip_lang_feature_extraction=True \
|
115 |
+
pipeline.mode="render"
|
116 |
+
```
|
117 |
+
You can also configurate by editting `configs/field_construction.yaml`.
|
118 |
+
|
119 |
+
## 🔗Acknowledgement
|
120 |
+
|
121 |
+
We are thankful for the following great works when implementing LangScene-X:
|
122 |
+
|
123 |
+
- [CogVideoX](https://github.com/THUDM/CogVideo), [CogvideX-Interpolation](https://github.com/feizc/CogvideX-Interpolation), [LangSplat](https://github.com/minghanqin/LangSplat), [LangSurf](https://github.com/lifuguan/LangSurf), [VGGT](https://github.com/facebookresearch/vggt), [3DGS](https://github.com/graphdeco-inria/gaussian-splatting), [SAM2](https://github.com/facebookresearch/sam2)
|
124 |
+
|
125 |
+
## 📚Citation
|
126 |
+
|
127 |
+
```bibtex
|
128 |
+
@misc{liu2025langscenexreconstructgeneralizable3d,
|
129 |
+
title={LangScene-X: Reconstruct Generalizable 3D Language-Embedded Scenes with TriMap Video Diffusion},
|
130 |
+
author={Fangfu Liu and Hao Li and Jiawei Chi and Hanyang Wang and Minghui Yang and Fudong Wang and Yueqi Duan},
|
131 |
+
year={2025},
|
132 |
+
eprint={2507.02813},
|
133 |
+
archivePrefix={arXiv},
|
134 |
+
primaryClass={cs.CV},
|
135 |
+
url={https://arxiv.org/abs/2507.02813},
|
136 |
+
}
|
137 |
+
```
|