File size: 2,454 Bytes
759b9af
 
 
 
 
 
 
 
 
 
 
 
 
 
fe974aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f76067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe974aa
 
 
 
 
7f76067
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: cc-by-sa-4.0
tags:
- unsloth
datasets:
- miriad/miriad-4.4M
language:
- en
metrics:
- perplexity
- bleu
base_model:
- google/gemma-3n-E4B-it
pipeline_tag: question-answering
---

# MedQA-Gemma-3n-E4B-4bit

A 4-bit quantized Gemma-3n-E4B model fine-tuned on medical Q&A data using Unsloth for efficient training.

## Model Details

### Overview
- **Model type**: Fine-tuned Gemma-3n-E4B (4-bit QLoRA)
- **Purpose**: Medical question answering
- **Training approach**: Instruction fine-tuning
- **Dataset**: 1,000 samples from [MIRIAD-4.4M](https://huggingface.co/datasets/miriad/miriad-4.4M)

### Specifications
| Feature               | Value                     |
|-----------------------|---------------------------|
| Base Model            | google/gemma-3n-E4B-it    |
| Quantization          | 4-bit (QLoRA)            |
| Trainable Parameters  | 19,210,240 (0.24% of total) |
| Sequence Length       | 1024 tokens               |
| License              | CC-BY-SA-4.0             |

## Training Information

### Hyperparameters
```python
{
    "per_device_batch_size": 2,
    "gradient_accumulation_steps": 8,
    "effective_batch_size": 16,
    "num_epochs": 5,
    "total_steps": 300,
    "learning_rate": 3e-5,
    "loRA_rank": 16,
    "loRA_alpha": 32,
    "optimizer": "adamw_8bit",
    "lr_scheduler": "cosine",
    "warmup_steps": 50,
    "weight_decay": 0.01,
    "max_seq_length": 1024
}
```

## Evaluation Results
| Metric        | Value |
|---------------|-------|
| BLEU-4        | 0.42  |
| ROUGE-L       | 0.58  |
| BERTScore-F1  | 0.76  |
| Perplexity    | 12.34 |

*Note: Evaluated on 100-sample test set*

## Limitations
- **Scope**: Trained on only 1,000 examples - not suitable for clinical use
- **Knowledge cutoff**: Inherits base model's knowledge limitations
- **Precision**: 4-bit quantization may affect some reasoning tasks
- **Bias**: May reflect biases in both base model and training data

## Ethical Considerations
- **Intended Use**: Research/educational purposes only
- **Not for**: Clinical decision making or medical advice
- **Bias Mitigation**: Users should apply additional filtering for sensitive applications

## Citation
```bibtex
@misc{medqa-gemma-3nE4B-4bit,
  author = {Chhatramani, YourName},
  title = {MedQA-Gemma-3n-E4B-4bit: Medical Q&A Fine-tuned Model},
  year = {2024},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/chhatramani/medqa-gemma-3nE4B-4bit}}
}