bartowski commited on
Commit
f6652cd
·
verified ·
1 Parent(s): 49fe528

Quant for 5.0

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/tab_1.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -10,62 +10,388 @@ tags:
10
  - model-fusion
11
  - fusechat
12
  library_name: transformers
13
- quantized_by: bartowski
14
  ---
 
 
15
 
16
- ## Exllama v2 Quantizations of FuseChat-7B-VaRM
17
 
18
- Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.14">turboderp's ExLlamaV2 v0.0.14</a> for quantization.
19
 
20
- <b>The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)</b>
21
 
22
- Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.
 
 
 
23
 
24
- Original model: https://huggingface.co/FuseAI/FuseChat-7B-VaRM
25
 
26
- | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description |
27
- | ----- | ---- | ------- | ------ | ------ | ------ | ------------ |
28
- | [8_0](https://huggingface.co/bartowski/FuseChat-7B-VaRM-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
29
- | [6_5](https://huggingface.co/bartowski/FuseChat-7B-VaRM-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. |
30
- | [5_0](https://huggingface.co/bartowski/FuseChat-7B-VaRM-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. |
31
- | [4_25](https://huggingface.co/bartowski/FuseChat-7B-VaRM-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. |
32
- | [3_5](https://huggingface.co/bartowski/FuseChat-7B-VaRM-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. |
33
 
34
- ## Download instructions
35
 
36
- With git:
37
 
38
- ```shell
39
- git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/FuseChat-7B-VaRM-exl2 FuseChat-7B-VaRM-exl2-6_5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  ```
41
 
42
- With huggingface hub (credit to TheBloke for instructions):
43
 
44
- ```shell
45
- pip3 install huggingface-hub
 
 
 
 
 
 
46
  ```
47
 
48
- To download the `main` (only useful if you only care about measurement.json) branch to a folder called `FuseChat-7B-VaRM-exl2`:
49
 
50
- ```shell
51
- mkdir FuseChat-7B-VaRM-exl2
52
- huggingface-cli download bartowski/FuseChat-7B-VaRM-exl2 --local-dir FuseChat-7B-VaRM-exl2 --local-dir-use-symlinks False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  ```
54
 
55
- To download from a different branch, add the `--revision` parameter:
56
 
57
- Linux:
58
 
59
- ```shell
60
- mkdir FuseChat-7B-VaRM-exl2-6_5
61
- huggingface-cli download bartowski/FuseChat-7B-VaRM-exl2 --revision 6_5 --local-dir FuseChat-7B-VaRM-exl2-6_5 --local-dir-use-symlinks False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  ```
63
 
64
- Windows (which apparently doesn't like _ in folders sometimes?):
 
 
 
 
 
 
 
 
 
 
 
65
 
66
- ```shell
67
- mkdir FuseChat-7B-VaRM-exl2-6.5
68
- huggingface-cli download bartowski/FuseChat-7B-VaRM-exl2 --revision 6_5 --local-dir FuseChat-7B-VaRM-exl2-6.5 --local-dir-use-symlinks False
 
 
 
 
69
  ```
70
 
71
- Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
 
 
 
 
 
 
 
 
 
 
 
10
  - model-fusion
11
  - fusechat
12
  library_name: transformers
 
13
  ---
14
+ <p align="center" width="100%">
15
+ </p>
16
 
17
+ <div id="top" align="center">
18
 
19
+ <p style="font-size: 32px; font-weight: bold;">FuseChat: Knowledge Fusion of Chat Models</p>
20
 
 
21
 
22
+ <h4> |<a href="https://arxiv.org/abs/2402.16107"> 📑 Paper </a> |
23
+ <a href="https://huggingface.co/FuseAI"> 🤗 Huggingface Repo </a> |
24
+ <a href="https://github.com/fanqiwan/FuseLLM"> 🐱 Github Repo </a> |
25
+ </h4>
26
 
27
+ <!-- **Authors:** -->
28
 
29
+ _**Fanqi Wan, Ziyi Yang, Longguang Zhong, Xiaojun Quan, Xinting Huang, Wei Bi**_
 
 
 
 
 
 
30
 
 
31
 
32
+ <!-- **Affiliations:** -->
33
 
34
+
35
+ _Sun Yat-sen University_
36
+
37
+ <p align="center">
38
+ <img src="./assets/fig_0.png" width="70%"> <br>
39
+ </p>
40
+
41
+ </div>
42
+
43
+
44
+ ## News
45
+ - **Feb 26, 2024:** 🔥 We release [FuseChat-7B-VaRM](https://huggingface.co/FuseAI/FuseChat-7B-VaRM), which is the fusion of three prominent chat LLMs with diverse architectures and scales, namely [NH2-Mixtral-8x7B](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO), [NH2-Solar-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B), and [OpenChat-3.5-7B](https://huggingface.co/openchat/openchat_3.5). FuseChat-7B-VaRM achieves an average performance of **8.22** on MT-Bench, outperforming various powerful chat LLMs at 7B and 34B scales like [Starling-7B](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) and [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat), even surpassing [GPT-3.5 (March)](https://platform.openai.com/docs/models/gpt-3-5-turbo), [Claude-2.1](https://www.anthropic.com/news/claude-2-1), and approaching [Mixtral-8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1).
46
+
47
+
48
+ ## Contents
49
+
50
+ - [Overview](#overview)
51
+ - [Model Release](#model-release)
52
+ - [Quick Start](#quick-start)
53
+ - [Data Construction](#data-construction)
54
+ - [Pairwise Knowledge Fusion](#pairwise-knowledge-fusion)
55
+ - [Model Merging](#model-merging)
56
+ - [Evaluation](#evaluation)
57
+ - [Citation](#citation)
58
+
59
+ ## Overview
60
+
61
+ In this work, we propose an extended framework of FuseLLM to integrate the collective knowledge and individual strengths of multiple structure and scale-varied chat LLMs into a more powerful chat LLM, resulting in FuseChat. FuseChat adopts a fuse-then-merge strategy with two main stages. Firstly, it undertakes pairwise knowledge fusion for source LLMs to derive multiple target LLMs of identical structure and size via lightweight fine-tuning. Then, these target LLMs are merged within the parameter space, wherein we propose a novel method VaRM for determining the merging weights based on the variation ratio of parameter matrices before and after fine-tuning.
62
+
63
+
64
+ Moreover, we argue that the concept of knowledge fusion adopted by both FuseChat and FuseLLM shares a fundamentally similar purpose with other related topics, such as the recently popular topic of mixture of experts (MoEs), because they all aim to leverage the strengths of multiple models (experts). However, while MoEs require loading multiple experts during inference, which has higher memory requirements, knowledge fusion supports the integration of multiple LLMs with diverse architectures into a single LLM without any additional memory requirement, making it more memory-efficient.
65
+
66
+ <p align="center">
67
+ <img src="./assets/fig_1.png" width="95%"> <br>
68
+ </p>
69
+
70
+
71
+ ## Model Release
72
+
73
+ We release [FuseChat-7B-VaRM](https://huggingface.co/FuseAI/FuseChat-7B-VaRM), which is the fusion of three prominent chat LLMs with diverse architectures and scales, namely [NH2-Mixtral-8x7B](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO), [NH2-Solar-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B), and [OpenChat-3.5-7B](https://huggingface.co/openchat/openchat_3.5).
74
+
75
+ To support a plug-and-play fusion of new source LLM, we release our target LLMs: [OpenChat-3.5-7B-Solar](https://huggingface.co/FuseAI/OpenChat-3.5-7B-Solar) and [OpenChat-3.5-7B-Mixtral](https://huggingface.co/FuseAI/OpenChat-3.5-7B-Mixtral), which are obtained from pair-wise knowledge fusion. Integrating a new source LLM at any scale requires only obtaining a target LLM from the new source LLM and merging it with the existing target LLMs.
76
+
77
+ We also release FuseChat with other merging methods: [FuseChat-7B-SLERP](https://huggingface.co/FuseAI/FuseChat-7B-SLERP) and [FuseChat-7B-TA](https://huggingface.co/FuseAI/FuseChat-7B-TA), which achieves an average performance of **8.19** and **8.20** on MT-Bench respectively.
78
+
79
+ Here are the evaluation results.
80
+
81
+ <p align="center">
82
+ <img src="./assets/tab_1.png" width="95%"> <br>
83
+ </p>
84
+
85
+ ## Quick Start
86
+
87
+ ### Setup
88
+
89
+ We use `python 3.11` in this project.
90
+
91
+ Then, we have to install all the libraries listed in `requirements.txt`.
92
+
93
+ ```bash
94
+ pip install -r requirements.txt
95
+ ```
96
+
97
+ ### Usage
98
+
99
+ Here's how you can run the model using the 🤗 Transformers:
100
+
101
+ ```python
102
+ import transformers
103
+ tokenizer = transformers.AutoTokenizer.from_pretrained("FuseAI/FuseChat-7B-VaRM")
104
+ # Single-turn
105
+ tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant:").input_ids
106
+ assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
107
+ # Multi-turn
108
+ tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:").input_ids
109
+ assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
110
  ```
111
 
112
+ The GPT4 template is also available as the integrated `tokenizer.chat_template`, which can be used instead of manually specifying the template:
113
 
114
+ ```python
115
+ messages = [
116
+ {"role": "user", "content": "Hello"},
117
+ {"role": "assistant", "content": "Hi"},
118
+ {"role": "user", "content": "How are you today?"}
119
+ ]
120
+ tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
121
+ assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
122
  ```
123
 
124
+ ## Data Construction
125
 
126
+ We curated a comprehensive training dataset, [FuseChat-Mixture](https://huggingface.co/datasets/FuseAI/FuseChat-Mixture), from various sources. This dataset covers different styles and capabilities, featuring both human-written and model-generated, and spanning general instruction-following and specific skills.
127
+
128
+ Here we show the scripts to obtain representations from multiple source LLMs for model fusion.
129
+
130
+ 1. Get representations for each source LLM
131
+
132
+ ```bash
133
+ # We split the dataset into 4 splits, then process each split on one or multiple GPU.
134
+
135
+ # OpenChat-3.5-7B
136
+ export CUDA_VISIBLE_DEVICES=0
137
+ for i in {0..3}; do
138
+ python /train/get_data_representation.py \
139
+ --model_name_or_path "openchat/openchat_3.5" \
140
+ --data_path "/data/fusechat_v1_clean_split_2048_filter_wrong.json" \
141
+ --dataset_save_dir "<${i}_4_path_to_openchat_representation>" \
142
+ --tknz_dataset_path "<${i}_4_path_to_openchat_tknz>" \
143
+ --cache_dir "/.cache/huggingface/datasets" \
144
+ --model_max_length 2048 \
145
+ --load_in_half bf16 \
146
+ --batch_size 32 \
147
+ --top_k_logits 10 \
148
+ --save_per_token_metric \
149
+ --no_assert \
150
+ --conv_temp "openchat" \
151
+ --flash_attn_transformers \
152
+ --mask_instruction \
153
+ --dataset_split_num 4 \
154
+ --dataset_index ${i}
155
+ done
156
+
157
+ # NH2-Mixtral-8x7B
158
+ export CUDA_VISIBLE_DEVICES=0,1,2
159
+ for i in {0..3}; do
160
+ python /train/get_data_representation.py \
161
+ --model_name_or_path "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO" \
162
+ --data_path "/data/fusechat_v1_clean_split_2048_filter_wrong.json" \
163
+ --dataset_save_dir "<${i}_4_path_to_mixtral_representation>" \
164
+ --tknz_dataset_path "<${i}_4_path_to_mixtral_tknz>" \
165
+ --cache_dir "/.cache/huggingface/datasets" \
166
+ --model_max_length 2048 \
167
+ --load_in_half bf16 \
168
+ --batch_size 4 \
169
+ --top_k_logits 10 \
170
+ --save_per_token_metric \
171
+ --no_assert \
172
+ --conv_temp "openchat" \
173
+ --flash_attn_transformers \
174
+ --mask_instruction \
175
+ --device_map "auto" \
176
+ --dataset_split_num 4 \
177
+ --dataset_index ${i}
178
+ done
179
+
180
+ # NH2-Solar-10.7B
181
+ export CUDA_VISIBLE_DEVICES=0
182
+ for i in {0..3}; do
183
+ python /train/get_data_representation.py \
184
+ --model_name_or_path "NousResearch/Nous-Hermes-2-SOLAR-10.7B" \
185
+ --data_path "/data/fusechat_v1_clean_split_2048_filter_wrong.json" \
186
+ --dataset_save_dir "<${i}_4_path_to_solar_representation>" \
187
+ --tknz_dataset_path "<${i}_4_path_to_solar_tknz>" \
188
+ --cache_dir "/.cache/huggingface/datasets" \
189
+ --model_max_length 2048 \
190
+ --load_in_half bf16 \
191
+ --batch_size 8 \
192
+ --top_k_logits 10 \
193
+ --save_per_token_metric \
194
+ --no_assert \
195
+ --conv_temp "openchat" \
196
+ --flash_attn_transformers \
197
+ --mask_instruction \
198
+ --dataset_split_num 4 \
199
+ --dataset_index ${i}
200
+ done
201
+ ```
202
+
203
+ 2. Align representations from different source LLMs
204
+
205
+ ```bash
206
+ # Since the tokenizers and vocabularies of these source LLMs are identical, we do not align.
207
+
208
+ # OpenChat-3.5-7B <-> NH2-Mixtral-8x7B
209
+ for i in {0..3}; do
210
+ python /train/replace_model.py \
211
+ --dataset_dir "<${i}_4_path_to_openchat_representation>" \
212
+ --replace_dataset_dir "<${i}_4_path_to_mixtral_representation>" \
213
+ --dataset_save_dir "<${i}_4_path_to_openchat_mixtral_representation>" \
214
+ --preprocessing_num_workers 64 \
215
+ --batch_size 1000 \
216
+ --replace_model model_0
217
+ done
218
+
219
+ # OpenChat-3.5-7B <-> NH2-Solar-10.7B
220
+ for i in {0..3}; do
221
+ python /train/replace_model.py \
222
+ --dataset_dir "<${i}_4_path_to_openchat_mixtral_representation>" \
223
+ --replace_dataset_dir "<${i}_4_path_to_solar_representation>" \
224
+ --dataset_save_dir "<${i}_4_path_to_openchat_mixtral_solar_representation>" \
225
+ --preprocessing_num_workers 64 \
226
+ --batch_size 1000 \
227
+ --replace_model model_1
228
+ done
229
+ ```
230
+
231
+ 3. Filter instances with NaN loss in the dataset
232
+
233
+ ```bash
234
+ for i in {0..3}; do
235
+ python /train/filter_nan.py \
236
+ --input_data_dir "<${i}_4_path_to_openchat_mixtral_solar_representation>" \
237
+ --output_data_dir "<${i}_4_path_to_openchat_mixtral_solar_representation_fnan>"
238
+ done
239
  ```
240
 
241
+ The final processed data is at `<${i}_4_path_to_openchat_mixtral_solar_representation_fnan>`.
242
 
243
+ ## Pairwise Knowledge Fusion
244
 
245
+ We show the scripts for pairwise knowledge fusion.
246
+
247
+ ```bash
248
+ # OpenChat-3.5-7B <-> NH2-Mixtral-8x7B
249
+ export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
250
+ torchrun --nproc_per_node=8 --master_port=20001 /train/train.py \
251
+ --model_name_or_path "openchat/openchat_3.5" \
252
+ --data_path "<0_4_path_to_openchat_mixtral_solar_representation_fnan>,<1_4_path_to_openchat_mixtral_solar_representation_fnan>,<2_4_path_to_openchat_mixtral_solar_representation_fnan>,<3_4_path_to_openchat_mixtral_solar_representation_fnan>" \
253
+ --bf16 True \
254
+ --output_dir "<path_to_save_openchat_mixtral_ckpt>" \
255
+ --num_train_epochs 3 \
256
+ --per_device_train_batch_size 4 \
257
+ --per_device_eval_batch_size 4 \
258
+ --gradient_accumulation_steps 4 \
259
+ --evaluation_strategy "no" \
260
+ --save_strategy "epoch" \
261
+ --save_steps 10000 \
262
+ --save_total_limit 5 \
263
+ --learning_rate 5e-6 \
264
+ --weight_decay 0. \
265
+ --warmup_ratio 0.03 \
266
+ --lr_scheduler_type "cosine" \
267
+ --logging_steps 1 \
268
+ --fsdp "full_shard auto_wrap" \
269
+ --fsdp_transformer_layer_cls_to_wrap 'MistralDecoderLayer' \
270
+ --tf32 True \
271
+ --model_max_length 2048 \
272
+ --gradient_checkpointing True \
273
+ --conv_temp "openchat" \
274
+ --lazy_preprocess True \
275
+ --flash_attn_transformers True \
276
+ --do_train \
277
+ --do_distill \
278
+ --distill_with_ref_model True \
279
+ --distill_with_aligned_model_0 True \
280
+ --distill_with_aligned_model_1 False \
281
+ --distill_loss_type "ce" \
282
+ --distill_teacher_temperature 1.0 \
283
+ --lm_loss_weight 0.9 \
284
+ --distill_greater_as_gt True \
285
+ --distill_greater_as_gt_type hard \
286
+ --dataloader_num_workers 8 \
287
+ --remove_unused_columns False
288
+
289
+ # OpenChat-3.5-7B <-> NH2-Solar-10.7B
290
+ export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
291
+ torchrun --nproc_per_node=8 --master_port=20001 /train/train.py \
292
+ --model_name_or_path "openchat/openchat_3.5" \
293
+ --data_path "<0_4_path_to_openchat_mixtral_solar_representation_fnan>,<1_4_path_to_openchat_mixtral_solar_representation_fnan>,<2_4_path_to_openchat_mixtral_solar_representation_fnan>,<3_4_path_to_openchat_mixtral_solar_representation_fnan>" \
294
+ --bf16 True \
295
+ --output_dir "<path_to_save_openchat_solar_ckpt>" \
296
+ --num_train_epochs 3 \
297
+ --per_device_train_batch_size 4 \
298
+ --per_device_eval_batch_size 4 \
299
+ --gradient_accumulation_steps 4 \
300
+ --evaluation_strategy "no" \
301
+ --save_strategy "epoch" \
302
+ --save_steps 10000 \
303
+ --save_total_limit 5 \
304
+ --learning_rate 5e-6 \
305
+ --weight_decay 0. \
306
+ --warmup_ratio 0.03 \
307
+ --lr_scheduler_type "cosine" \
308
+ --logging_steps 1 \
309
+ --fsdp "full_shard auto_wrap" \
310
+ --fsdp_transformer_layer_cls_to_wrap 'MistralDecoderLayer' \
311
+ --tf32 True \
312
+ --model_max_length 2048 \
313
+ --gradient_checkpointing True \
314
+ --conv_temp "openchat" \
315
+ --lazy_preprocess True \
316
+ --flash_attn_transformers True \
317
+ --do_train \
318
+ --do_distill \
319
+ --distill_with_ref_model True \
320
+ --distill_with_aligned_model_0 False \
321
+ --distill_with_aligned_model_1 True \
322
+ --distill_loss_type "ce" \
323
+ --distill_teacher_temperature 1.0 \
324
+ --lm_loss_weight 0.9 \
325
+ --distill_greater_as_gt True \
326
+ --distill_greater_as_gt_type hard \
327
+ --dataloader_num_workers 8 \
328
+ --remove_unused_columns False
329
+ ```
330
+
331
+ ## Model Merging
332
+
333
+ We show the scripts to obtain the final FuseChat using different merging methods.
334
+
335
+ ```bash
336
+ # For "slerp", "ta", "ties", and "dare" methods
337
+ export CUDA_VISIBLE_DEVICES=0
338
+ mergekit-yaml merge/mergekit_configs/fusechat-slerp.yml "<path_to_save_fusechat_7b_slerp>"
339
+ mergekit-yaml merge/mergekit_configs/fusechat-ta.yml "<path_to_save_fusechat_7b_ta>"
340
+ mergekit-yaml merge/mergekit_configs/fusechat-ties.yml "<path_to_save_fusechat_7b_ties>"
341
+ mergekit-yaml merge/mergekit_configs/fusechat-dare.yml "<path_to_save_fusechat_7b_dare>"
342
+
343
+ # For "linear" method
344
+ python merge/VaRM/merge.py \
345
+ --merged_model_names "FuseAI/OpenChat-3.5-7B-Mixtral,FuseAI/OpenChat-3.5-7B-Solar" \
346
+ --merged_model_save_dir "<path_to_save_fusechat_7b_linear>" \
347
+ --merge_method "linear" \
348
+ --linear_weights "1,2"
349
+
350
+ # For our "varm" method
351
+ python merge/VaRM/analysis.py \
352
+ --model1_path "FuseAI/OpenChat-3.5-7B-Mixtral" \
353
+ --model2_path "FuseAI/OpenChat-3.5-7B-Solar" \
354
+ --save_path "<path_to_save_analysis_result>/analysis.json" \
355
+ --merge_type "square"
356
+
357
+ python merge/VaRM/merge.py \
358
+ --merged_model_names "FuseAI/OpenChat-3.5-7B-Mixtral,FuseAI/OpenChat-3.5-7B-Solar" \
359
+ --analysis_result "<path_to_save_analysis_result>/analysis.json" \
360
+ --merged_model_save_dir "<path_to_save_fusechat_7b_varm>" \
361
+ --merge_method "avg_param" \
362
+ --merge_type "square"
363
  ```
364
 
365
+ ## Evaluation
366
+
367
+ We evaluate FuseChat on MT-Bench, which comprises 80 multi-turn dialogues spanning writing, roleplay, reasoning, math, coding, stem, and humanities domains. Please download the [official code](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) and follow the guidelines for evaluation. We provide the scripts for our evaluation.
368
+
369
+ ```bash
370
+ # Step 1. Generate model answers to MT-bench questions
371
+ export CUDA_VISIBLE_DEVICES=0,1
372
+ python gen_model_answer.py \
373
+ --model-path "FuseAI/FuseChat-7B-VaRM" \
374
+ --model-id "openchat_3.5_fusechat_7b_varm" \
375
+ --num-gpus-per-model 1 \
376
+ --num-gpus-total 2
377
 
378
+ # Step 2. Generate GPT-4 judgments
379
+ export OPENAI_API_KEY=XXXXXX # set the OpenAI API key
380
+ python gen_judgment.py \
381
+ --parallel 2
382
+
383
+ # Step 3. Show MT-bench scores
384
+ python show_result.py
385
  ```
386
 
387
+ ## Citation
388
+
389
+ If you find this work is relevant with your research or applications, please feel free to cite our work!
390
+ ```
391
+ @article{wan2024fusechat,
392
+ title={FuseChat: Knowledge Fusion of Chat Models},
393
+ author={Fanqi Wan and Ziyi Yang and Longguang Zhong and Xiaojun Quan and Xinting Huang and Wei Bi},
394
+ journal={arXiv preprint arXiv:2402.16107},
395
+ year={2024}
396
+ }
397
+ ```
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<|end_of_turn|>": 32000,
3
+ "<|pad_0|>": 32001
4
+ }
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data/wanfq/agno_fusion/fusechat_models/fusechat_v1_nous_hermes_mixtral_teacher_e3",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 32000,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 8192,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_theta": 10000.0,
20
+ "sliding_window": 4096,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.36.0",
24
+ "use_cache": true,
25
+ "vocab_size": 32002
26
+ }
gpt-4_single_fusechat_7b_varm.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
original_repo_url.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ https://huggingface.co/FuseAI/FuseChat-7B-VaRM
output.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a66f7eda8d3f8bb1e1c2d33a07a38159f03f20eda590df467639d009386623de
3
+ size 4728786016
special_tokens_map.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|end_of_turn|>",
4
+ "<|pad_0|>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<s>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<|end_of_turn|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "unk_token": {
21
+ "content": "<unk>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ }
27
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "<|end_of_turn|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32001": {
38
+ "content": "<|pad_0|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ }
45
+ },
46
+ "additional_special_tokens": [
47
+ "<|end_of_turn|>",
48
+ "<|pad_0|>"
49
+ ],
50
+ "bos_token": "<s>",
51
+ "chat_template": "{{ bos_token }}{% for message in messages %}{{ 'GPT4 Correct ' + message['role'].title() + ': ' + message['content'] + '<|end_of_turn|>'}}{% endfor %}{% if add_generation_prompt %}{{ 'GPT4 Correct Assistant:' }}{% endif %}",
52
+ "clean_up_tokenization_spaces": false,
53
+ "eos_token": "<|end_of_turn|>",
54
+ "legacy": true,
55
+ "model_max_length": 1000000000000000019884624838656,
56
+ "pad_token": null,
57
+ "sp_model_kwargs": {},
58
+ "spaces_between_special_tokens": false,
59
+ "tokenizer_class": "LlamaTokenizer",
60
+ "unk_token": "<unk>",
61
+ "use_default_system_prompt": true
62
+ }