Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,193 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- fr
|
6 |
+
- de
|
7 |
+
- es
|
8 |
+
- pt
|
9 |
+
- it
|
10 |
+
- ja
|
11 |
+
- ko
|
12 |
+
- ru
|
13 |
+
- zh
|
14 |
+
- ar
|
15 |
+
- fa
|
16 |
+
- id
|
17 |
+
- ms
|
18 |
+
- ne
|
19 |
+
- pl
|
20 |
+
- ro
|
21 |
+
- sr
|
22 |
+
- sv
|
23 |
+
- tr
|
24 |
+
- uk
|
25 |
+
- vi
|
26 |
+
- hi
|
27 |
+
- bn
|
28 |
+
base_model: mistralai/Mistral-Small-3.1-24B-Instruct-2503
|
29 |
+
library_name: vllm
|
30 |
+
inference: false
|
31 |
+
|
32 |
+
---
|
33 |
+
|
34 |
+
# Aqui-VL 24B Mistral
|
35 |
+
|
36 |
+
Aqui-VL 24B Mistral is an advanced language model based on Mistral Small 3.1, designed to deliver exceptional performance while remaining accessible on consumer-grade hardware. This is the first open weights model from Aqui Solutions, the company behind [AquiGPT](https://aquigpt.com.br). With 23.6 billion parameters, it can run efficiently on a single RTX 4090 GPU or a 32GB Mac, making cutting-edge AI capabilities available to researchers, developers, and enthusiasts.
|
37 |
+
|
38 |
+
## Key Features
|
39 |
+
|
40 |
+
- **Consumer Hardware Compatible**: Runs on single RTX 4090 or 32GB Mac
|
41 |
+
- **Multimodal Capabilities**: Text, vision, chart analysis, and document understanding
|
42 |
+
- **128K Context Window**: Handle long documents and complex conversations
|
43 |
+
- **Strong Instruction Following**: Significantly improved over base Mistral Small 3.1
|
44 |
+
- **Exceptional Code Generation**: Best-in-class coding performance
|
45 |
+
|
46 |
+
## Hardware Requirements
|
47 |
+
|
48 |
+
### Minimum Requirements
|
49 |
+
- **GPU**: RTX 4090 (24GB VRAM) or equivalent
|
50 |
+
- **Mac**: 32GB unified memory (Apple Silicon recommended)
|
51 |
+
- **RAM**: 32GB system memory (for GPU setups)
|
52 |
+
- **Storage**: 20GB available space (for model and overhead)
|
53 |
+
|
54 |
+
### Recommended Setup
|
55 |
+
- **GPU**: RTX 4090 with adequate cooling
|
56 |
+
- **CPU**: Modern multi-core processor
|
57 |
+
- **RAM**: 64GB+ for optimal performance
|
58 |
+
- **Storage**: NVMe SSD for faster model loading
|
59 |
+
|
60 |
+
## Performance Benchmarks
|
61 |
+
|
62 |
+
Aqui-VL 24B Mistral demonstrates competitive performance across multiple domains:
|
63 |
+
|
64 |
+
| Benchmark | Aqui-VL 24B Mistral | Mistral Small 3.1 | Llama 3.1 70B |
|
65 |
+
|-----------|------------------|-------------------|----------------|
|
66 |
+
| **IFEval** (Instruction Following) | 65.3% | 55.6% | **87.5%** |
|
67 |
+
| **MMLU** (General Knowledge) | 80.9% | 80.5% | **86.0%** |
|
68 |
+
| **GPQA** (Science Q&A) | 44.7% | 44.4% | **46.7%** |
|
69 |
+
| **HumanEval** (Coding) | **92.5%** | 88.9% | 80.5% |
|
70 |
+
| **MATH** (Mathematics) | 69.3% | **69.5%** | 68.0% |
|
71 |
+
| **MMMU** (General Vision) | **64.0%** | 62.5% | N/A* |
|
72 |
+
| **ChartQA** (Chart Analysis) | **87.6%** | 86.2% | N/A* |
|
73 |
+
| **DocVQA** (Document Analysis) | **94.9%** | 94.1% | N/A* |
|
74 |
+
| **Average Text Performance** | 70.5% | 67.8% | **73.7%** |
|
75 |
+
| **Average Vision Performance** | **82.2%** | 80.9% | N/A* |
|
76 |
+
|
77 |
+
*Llama 3.1 70B does not include vision capabilities
|
78 |
+
|
79 |
+
## Model Specifications
|
80 |
+
|
81 |
+
- **Parameters**: 23.6 billion
|
82 |
+
- **Context Window**: 128,000 tokens
|
83 |
+
- **Knowledge Cutoff**: December 2023
|
84 |
+
- **Architecture**: mistral (transformer-based with vision)
|
85 |
+
- **Languages**: Multilingual support with strong English, French and Portuguese performance
|
86 |
+
|
87 |
+
## Installation & Usage
|
88 |
+
|
89 |
+
### Quick Start with Transformers
|
90 |
+
|
91 |
+
```python
|
92 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
93 |
+
import torch
|
94 |
+
|
95 |
+
# Load model and tokenizer
|
96 |
+
model_name = "aquigpt/aqui-vl-24b"
|
97 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
98 |
+
model = AutoModelForCausalLM.from_pretrained(
|
99 |
+
model_name,
|
100 |
+
torch_dtype=torch.float16,
|
101 |
+
device_map="auto"
|
102 |
+
)
|
103 |
+
|
104 |
+
# Generate text
|
105 |
+
prompt = "Explain quantum computing in simple terms:"
|
106 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
107 |
+
outputs = model.generate(**inputs, max_length=200, temperature=0.7)
|
108 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
109 |
+
print(response)
|
110 |
+
```
|
111 |
+
|
112 |
+
### Using with Ollama
|
113 |
+
|
114 |
+
```bash
|
115 |
+
# Pull the model
|
116 |
+
ollama pull aquiffoo/aqui-vl-24b
|
117 |
+
|
118 |
+
# Run interactive chat
|
119 |
+
ollama run aquiffoo/aqui-vl-24b
|
120 |
+
```
|
121 |
+
|
122 |
+
### Using with llama.cpp
|
123 |
+
|
124 |
+
```bash
|
125 |
+
# Download quantized model (Q4_K_M, 14.4GB)
|
126 |
+
wget https://huggingface.co/aquigpt/aqui-vl-24b/resolve/main/aqui-vl-24b-q4_k_m.gguf
|
127 |
+
|
128 |
+
# Run with llama.cpp
|
129 |
+
./main -m aqui-vl-24b-q4_k_m.gguf -p "Your prompt here" -n 100
|
130 |
+
```
|
131 |
+
|
132 |
+
## Use Cases
|
133 |
+
|
134 |
+
### Code Generation & Programming
|
135 |
+
With an 88.9% score on HumanEval, Aqui-VL 24B Mistral excels at:
|
136 |
+
- Writing clean, efficient code in multiple languages
|
137 |
+
- Debugging and code review
|
138 |
+
- Algorithm implementation
|
139 |
+
- Technical documentation
|
140 |
+
|
141 |
+
### Document & Chart Analysis
|
142 |
+
Strong vision capabilities enable:
|
143 |
+
- PDF document analysis and Q&A
|
144 |
+
- Chart and graph interpretation
|
145 |
+
- Scientific paper comprehension
|
146 |
+
- Business report analysis
|
147 |
+
|
148 |
+
### General Assistance
|
149 |
+
- Research and information synthesis
|
150 |
+
- Creative writing and content generation
|
151 |
+
- Mathematical problem solving
|
152 |
+
- Multilingual translation and communication
|
153 |
+
|
154 |
+
## Quantization
|
155 |
+
|
156 |
+
Aqui-VL 24B Mistral is available exclusively in Q4_K_M quantization, optimized for the best balance of performance and hardware compatibility:
|
157 |
+
|
158 |
+
- **Format**: Q4_K_M quantization
|
159 |
+
- **Size**: 14.4GB
|
160 |
+
- **VRAM Usage**: ~16GB (with overhead)
|
161 |
+
- **Compatible with**: RTX 4090, 32GB Mac, and similar hardware
|
162 |
+
- **Performance**: Excellent quality retention with 4-bit quantization
|
163 |
+
|
164 |
+
## Fine-tuning & Customization
|
165 |
+
|
166 |
+
Aqui-VL 24B Mistral supports:
|
167 |
+
- Parameter-efficient fine-tuning (LoRA, QLoRA)
|
168 |
+
- Full fine-tuning for specialized domains
|
169 |
+
- Custom tokenizer training
|
170 |
+
- Multi-modal fine-tuning for specific vision tasks
|
171 |
+
|
172 |
+
## Limitations
|
173 |
+
|
174 |
+
- Knowledge cutoff at December 2023
|
175 |
+
- May occasionally produce hallucinations
|
176 |
+
- Performance varies with quantization level
|
177 |
+
- Requires significant computational resources for optimal performance
|
178 |
+
|
179 |
+
## License
|
180 |
+
|
181 |
+
This model is released under the [Apache 2.0 License](LICENSE), making it suitable for both research and commercial applications.
|
182 |
+
|
183 |
+
## Support
|
184 |
+
|
185 |
+
For questions and support regarding Aqui-VL 24B Mistral, please visit the [Hugging Face repository](https://huggingface.co/aquigpt/aqui-vl-24b) and use the community discussions section.
|
186 |
+
|
187 |
+
## Acknowledgments
|
188 |
+
|
189 |
+
Built upon the excellent foundation of Mistral Small 3.1 by Mistral AI. Special thanks to the open-source community for tools and datasets that made this model possible.
|
190 |
+
|
191 |
+
---
|
192 |
+
|
193 |
+
*Copyright 2025 Aqui Solutions. All rights reserved*
|