doctorpangloss
commited on
Commit
·
8ee2e44
1
Parent(s):
3d154ed
Convert to Hugging Face repo format
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- Cosmos-1.0-Guardrail/README.md +0 -528
- Cosmos-1.0-Guardrail/aegis/.locks/models--meta-llama--LlamaGuard-7b/0d30a7faffd5631f68ca99856c40c252b1a5839a.lock +0 -0
- Cosmos-1.0-Guardrail/aegis/.locks/models--meta-llama--LlamaGuard-7b/1a87b8f7340ada18ca4f047077a9d5b13882acc1.lock +0 -0
- Cosmos-1.0-Guardrail/aegis/.locks/models--meta-llama--LlamaGuard-7b/451134b2ddc2e78555d1e857518c54b4bdc2e87d.lock +0 -0
- Cosmos-1.0-Guardrail/aegis/.locks/models--meta-llama--LlamaGuard-7b/4d92c8b74f78b0e0f4b32921d13a007efcd0e0447290da6d92f787c3295b0ad8.lock +0 -0
- Cosmos-1.0-Guardrail/aegis/.locks/models--meta-llama--LlamaGuard-7b/5f4117005b41815881fe7f26aee4cbec8c55aa32.lock +0 -0
- Cosmos-1.0-Guardrail/aegis/.locks/models--meta-llama--LlamaGuard-7b/9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347.lock +0 -0
- Cosmos-1.0-Guardrail/aegis/.locks/models--meta-llama--LlamaGuard-7b/a19b92a679870c311122d67ae980737cf3e51424b396b3809463c4d9b06c7fcf.lock +0 -0
- Cosmos-1.0-Guardrail/aegis/.locks/models--meta-llama--LlamaGuard-7b/a6e931b92caff4c79c5c56282f1e89569a0ae558.lock +0 -0
- Cosmos-1.0-Guardrail/aegis/.locks/models--meta-llama--LlamaGuard-7b/e75756c38e88b19504b139e45c2bb1e925f3863c.lock +0 -0
- Cosmos-1.0-Guardrail/aegis/.locks/models--meta-llama--LlamaGuard-7b/f9e6f2ab03a3b92bf4bc6cfd6d6dcdaa8b36ab5ecf73dcfd1e8da3b5a95261a8.lock +0 -0
- Cosmos-1.0-Guardrail/aegis/.locks/models--nvidia--Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0/c4d110b05e852cead25fcc7426bf251eb3d15aa0.lock +0 -0
- Cosmos-1.0-Guardrail/aegis/.locks/models--nvidia--Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0/d79b29a0b9ab36db8038e39e847b3c81ebd56dd8d796551943ea4b43b2e6c55c.lock +0 -0
- Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/.no_exist/dfcfa3409b9994a4722d44e05f82e81ea73c5106/adapter_config.json +0 -0
- Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/.no_exist/dfcfa3409b9994a4722d44e05f82e81ea73c5106/added_tokens.json +0 -0
- Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/.no_exist/dfcfa3409b9994a4722d44e05f82e81ea73c5106/chat_template.jinja +0 -0
- Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/.no_exist/dfcfa3409b9994a4722d44e05f82e81ea73c5106/model.safetensors +0 -0
- Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/blobs/0d30a7faffd5631f68ca99856c40c252b1a5839a +0 -8
- Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/blobs/1a87b8f7340ada18ca4f047077a9d5b13882acc1 +0 -42
- Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/blobs/451134b2ddc2e78555d1e857518c54b4bdc2e87d +0 -23
- Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/blobs/5f4117005b41815881fe7f26aee4cbec8c55aa32 +0 -298
- Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/blobs/9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347 +0 -0
- Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/blobs/e75756c38e88b19504b139e45c2bb1e925f3863c +0 -26
- Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/refs/main +0 -1
- Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/snapshots/dfcfa3409b9994a4722d44e05f82e81ea73c5106/config.json +0 -26
- Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/snapshots/dfcfa3409b9994a4722d44e05f82e81ea73c5106/model.safetensors.index.json +0 -298
- Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/snapshots/dfcfa3409b9994a4722d44e05f82e81ea73c5106/special_tokens_map.json +0 -23
- Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/snapshots/dfcfa3409b9994a4722d44e05f82e81ea73c5106/tokenizer.json +0 -0
- Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/snapshots/dfcfa3409b9994a4722d44e05f82e81ea73c5106/tokenizer.model +0 -3
- Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/snapshots/dfcfa3409b9994a4722d44e05f82e81ea73c5106/tokenizer_config.json +0 -42
- Cosmos-1.0-Guardrail/aegis/models--nvidia--Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0/blobs/c4d110b05e852cead25fcc7426bf251eb3d15aa0 +0 -33
- Cosmos-1.0-Guardrail/aegis/models--nvidia--Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0/blobs/d79b29a0b9ab36db8038e39e847b3c81ebd56dd8d796551943ea4b43b2e6c55c +0 -3
- Cosmos-1.0-Guardrail/aegis/models--nvidia--Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0/refs/main +0 -1
- Cosmos-1.0-Guardrail/aegis/models--nvidia--Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0/snapshots/f54cb2302ee876705dc0f7df2288f442c034b2f3/adapter_config.json +0 -33
- Cosmos-1.0-Guardrail/aegis/models--nvidia--Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0/snapshots/f54cb2302ee876705dc0f7df2288f442c034b2f3/adapter_model.safetensors +0 -3
- Cosmos-1.0-Guardrail/blocklist/custom/branding +0 -209
- Cosmos-1.0-Guardrail/blocklist/custom/gore +0 -59
- Cosmos-1.0-Guardrail/blocklist/custom/notable +0 -109
- Cosmos-1.0-Guardrail/blocklist/custom/violence +0 -6
- Cosmos-1.0-Guardrail/blocklist/exact_match/blocked +0 -1339
- Cosmos-1.0-Guardrail/blocklist/nltk_data/corpora/wordnet.zip +0 -3
- Cosmos-1.0-Guardrail/blocklist/nltk_data/tokenizers/punkt_tab.zip +0 -3
- Cosmos-1.0-Guardrail/blocklist/nltk_data/tokenizers/punkt_tab/README +0 -98
- Cosmos-1.0-Guardrail/blocklist/nltk_data/tokenizers/punkt_tab/czech/abbrev_types.txt +0 -118
- Cosmos-1.0-Guardrail/blocklist/nltk_data/tokenizers/punkt_tab/czech/collocations.tab +0 -96
- Cosmos-1.0-Guardrail/blocklist/nltk_data/tokenizers/punkt_tab/czech/ortho_context.tab +0 -0
- Cosmos-1.0-Guardrail/blocklist/nltk_data/tokenizers/punkt_tab/czech/sent_starters.txt +0 -54
- Cosmos-1.0-Guardrail/blocklist/nltk_data/tokenizers/punkt_tab/danish/abbrev_types.txt +0 -211
- Cosmos-1.0-Guardrail/blocklist/nltk_data/tokenizers/punkt_tab/danish/collocations.tab +0 -101
- Cosmos-1.0-Guardrail/blocklist/nltk_data/tokenizers/punkt_tab/danish/ortho_context.tab +0 -0
Cosmos-1.0-Guardrail/README.md
DELETED
@@ -1,528 +0,0 @@
|
|
1 |
-
---
|
2 |
-
license: other
|
3 |
-
license_name: nvidia-open-model-license
|
4 |
-
license_link: >-
|
5 |
-
https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license
|
6 |
-
library_name: nemo
|
7 |
-
tags:
|
8 |
-
- nvidia
|
9 |
-
- nemo
|
10 |
-
- cosmos
|
11 |
-
extra_gated_prompt: >-
|
12 |
-
# NVIDIA Open Model License Agreement
|
13 |
-
|
14 |
-
Version Release Date: December 20, 2024
|
15 |
-
|
16 |
-
This NVIDIA Open Model License Agreement (the "<ins>Agreement</ins>") is a legal agreement between the Legal Entity You represent, or if no entity is identified, You and NVIDIA Corporation and its Affiliates ("<ins>NVIDIA</ins>") and governs Your use of the Models that NVIDIA provides to You under this Agreement. NVIDIA and You are each a "<ins>party</ins>" and collectively the "<ins>parties</ins>."
|
17 |
-
|
18 |
-
NVIDIA models released under this Agreement are intended to be used permissively and enable the further development of AI technologies. Subject to the terms of this Agreement, NVIDIA confirms that:
|
19 |
-
|
20 |
-
* Models are commercially usable.
|
21 |
-
|
22 |
-
* You are free to create and distribute Derivative Models.
|
23 |
-
|
24 |
-
* NVIDIA does not claim ownership to any outputs generated using the Models or Model Derivatives.
|
25 |
-
|
26 |
-
By using, reproducing, modifying, distributing, performing or displaying any portion or element of the Model or Derivative Model, or otherwise accepting the terms of this Agreement, you agree to be bound by this Agreement.
|
27 |
-
|
28 |
-
## 1. Definitions
|
29 |
-
|
30 |
-
The following definitions apply to this Agreement:
|
31 |
-
|
32 |
-
1.1. "<ins>NVIDIA Cosmos Model</ins>" means a multimodal Model shared under this Agreement.
|
33 |
-
|
34 |
-
1.2. "<ins>Derivative Model</ins>" means all (a) modifications to the Model, (b) works based on the Model, and (c) any other derivative works of the Model. An output is not a Derivative Model.
|
35 |
-
|
36 |
-
1.3. "<ins>Legal Entity</ins>" means the union of the acting entity and all other entities that <ins>control</ins>, are controlled by, or are under common control with that entity. For the purposes of this definition, "<ins>control</ins>" means (a) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (b) ownership of fifty percent (50%) or more of the outstanding shares, or (c) beneficial ownership of such entity.
|
37 |
-
|
38 |
-
1.4. "<ins>Model</ins>" means the machine learning model, software, checkpoints, learnt weights, algorithms, parameters, configuration files and documentation shared under this Agreement.
|
39 |
-
|
40 |
-
1.5. "<ins>You</ins>" or "<ins>Your</ins>" means an individual or Legal Entity exercising permissions granted by this Agreement.
|
41 |
-
|
42 |
-
## 2. Conditions for Use, License Grant, AI Ethics and IP Ownership
|
43 |
-
|
44 |
-
2.1. Conditions for Use. The Model and any Derivative Model are subject to additional terms as described in Section 2 and Section 3 of this Agreement and govern Your use. If You institute copyright or patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Model or a Derivative Model constitutes direct or contributory copyright or patent infringement, then any licenses granted to You under this Agreement for that Model or Derivative Model will terminate as of the date such litigation is filed. If You bypass, disable, reduce the efficacy of, or circumvent any technical limitation, safety guardrail or associated safety guardrail hyperparameter, encryption, security, digital rights management, or authentication mechanism contained in the Model, your rights under this Agreement will automatically terminate. NVIDIA may update this Agreement to comply with legal and regulatory requirements at any time and You agree to either comply with any updated license or cease Your copying, use, and distribution of the Model and any Derivative Model.
|
45 |
-
|
46 |
-
2.2. License Grant. The rights granted herein are explicitly conditioned on Your full compliance with the terms of this Agreement. Subject to the terms and conditions of this Agreement, NVIDIA hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, revocable (as stated in Section 2.1) license to publicly perform, publicly display, reproduce, use, create derivative works of, make, have made, sell, offer for sale, distribute (through multiple tiers of distribution) and import the Model.
|
47 |
-
|
48 |
-
2.3. AI Ethics. Use of the Models under the Agreement must be consistent with NVIDIA's Trustworthy AI terms found at https://www.nvidia.com/en-us/agreements/trustworthy-ai/terms/.
|
49 |
-
|
50 |
-
2.4. NVIDIA owns the Model and any Model Derivatives created by NVIDIA. Subject to NVIDIA's underlying ownership rights in the Model or its Model Derivatives, You are and will be the owner of Your Model Derivatives. NVIDIA claims no ownership rights in outputs. You are responsible for outputs and their subsequent uses. Except as expressly granted in this Agreement, (a) NVIDIA reserves all rights, interests and remedies in connection with the Model and (b) no other license or right is granted to you by implication, estoppel or otherwise.
|
51 |
-
|
52 |
-
## 3. Redistribution
|
53 |
-
|
54 |
-
You may reproduce and distribute copies of the Model or Derivative Models thereof in any medium, with or without modifications, provided that You meet the following conditions:
|
55 |
-
|
56 |
-
3.1. If you distribute the Model, You must give any other recipients of the Model a copy of this Agreement and include the following attribution notice within a "Notice" text file with such copies: "Licensed by NVIDIA Corporation under the NVIDIA Open Model License";
|
57 |
-
|
58 |
-
3.2. If you distribute or make available a NVIDIA Cosmos Model, or a product or service (including an AI model) that contains or uses a NVIDIA Cosmos Model, use a NVIDIA Cosmos Model to create a Derivative Model, or use a NVIDIA Cosmos Model or its outputs to create, train, fine tune, or otherwise improve an AI model, you will include "Built on NVIDIA Cosmos" on a related website, user interface, blogpost, about page, or product documentation; and
|
59 |
-
|
60 |
-
3.3. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Models as a whole, provided Your use, reproduction, and distribution of the Model otherwise complies with the conditions stated in this Agreement.
|
61 |
-
|
62 |
-
## 4. Trademarks
|
63 |
-
|
64 |
-
This Agreement does not grant permission to use the trade names, trademarks, service marks, or product names of NVIDIA, except as required for reasonable and customary use in describing the origin of the Model and reproducing the content of the "Notice" text file.
|
65 |
-
|
66 |
-
## **5. Disclaimer of Warranty**
|
67 |
-
|
68 |
-
**Unless required by applicable law or agreed to in writing, NVIDIA provides the Model on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Model, Derivative Models and outputs and assume any risks associated with Your exercise of permissions under this Agreement.**
|
69 |
-
|
70 |
-
## **6. Limitation of Liability**
|
71 |
-
|
72 |
-
**In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, will NVIDIA be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this Agreement or out of the use or inability to use the Model, Derivative Models or outputs (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if NVIDIA has been advised of the possibility of such damages.**
|
73 |
-
|
74 |
-
## 7. Indemnity
|
75 |
-
|
76 |
-
You will indemnify and hold harmless NVIDIA from and against any claim by any third party arising out of or related to your use or distribution of the Model, Model Derivatives or outputs.
|
77 |
-
|
78 |
-
## 8. Feedback
|
79 |
-
|
80 |
-
NVIDIA appreciates your feedback, and You agree that NVIDIA may use it without restriction or compensation to You.
|
81 |
-
|
82 |
-
## 9. Governing Law
|
83 |
-
|
84 |
-
This Agreement will be governed in all respects by the laws of the United States and the laws of the State of Delaware, without regard to conflict of laws principles or the United Nations Convention on Contracts for the International Sale of Goods. The state and federal courts residing in Santa Clara County, California will have exclusive jurisdiction over any dispute or claim arising out of or related to this Agreement, and the parties irrevocably consent to personal jurisdiction and venue in those courts; except that, either party may apply for injunctive remedies or an equivalent type of urgent legal relief in any jurisdiction.
|
85 |
-
|
86 |
-
## 10. Trade and Compliance
|
87 |
-
|
88 |
-
You agree to comply with all applicable export, import, trade and economic sanctions laws and regulations, as amended, including without limitation U.S. Export Administration Regulations and Office of Foreign Assets Control regulations. These laws include restrictions on destinations, end-users and end-use.
|
89 |
-
extra_gated_fields:
|
90 |
-
By clicking Submit below, I accept the terms of the NVIDIA Open Model License Agreement and acknowledge that I am an adult of legal age of majority in the country in which the Cosmos Models will be used and have authority to accept this Agreement: checkbox
|
91 |
-
extra_gated_description: >-
|
92 |
-
The information you provide will be collected, stored, processed and shared in accordance with the [NVIDIA Privacy Policy](https://www.nvidia.com/en-us/about-nvidia/privacy-policy/).
|
93 |
-
extra_gated_button_content: Submit
|
94 |
-
---
|
95 |
-
# **Cosmos-1.0 Guardrail**
|
96 |
-
|
97 |
-
[**Cosmos**](https://huggingface.co/collections/nvidia/cosmos-6751e884dc10e013a0a0d8e6) | [**Code**](https://github.com/NVIDIA/Cosmos) | [**Paper**](https://research.nvidia.com/publication/2025-01_cosmos-world-foundation-model-platform-physical-ai)
|
98 |
-
|
99 |
-
# Model Overview
|
100 |
-
|
101 |
-
## Description:
|
102 |
-
**Cosmos World Foundation Models**: A family of highly performant pre-trained world foundation models purpose-built for generating physics-aware videos and world states for physical AI development.
|
103 |
-
|
104 |
-
Cosmos Guardrail is a content safety model comprising of four components that enforce content safety. The components are as follows.
|
105 |
-
|
106 |
-
1. Aegis-AI-Content-Safety-LlamaGuard-LLM-Defensive-1.0: An LLM fine-tuned for content safety. It is a parameter-efficient instruction-tuned version of Llama-Guard based on Llama2-7B, which is trained on NVIDIA's Aegis Content Safety Dataset covering NVIDIA's broad taxonomy of 13 critical safety risk categories. See model card [here](https://huggingface.co/nvidia/Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0).
|
107 |
-
|
108 |
-
2. Blocklist: A set of human-curated keywords that are used to filter our corner-cases.
|
109 |
-
|
110 |
-
3. Video Content Safety Filter: A multi-class classifier model that is trained to distinguish between safe and unsafe frames of the generated video using SigLIP embeddings [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384).
|
111 |
-
|
112 |
-
4. Face Blur Filter: A pixelation filter that uses [RetinaFace](https://github.com/biubug6/Pytorch_Retinaface) to identify facial regions with high confidence scores and apply pixelation to any detections larger than 20x20 pixels.
|
113 |
-
|
114 |
-
**Model Developer**: NVIDIA
|
115 |
-
|
116 |
-
## Model Versions
|
117 |
-
|
118 |
-
Cosmos 1.0 ships with [Cosmos-1.0-Guardrail](https://huggingface.co/nvidia/Cosmos-1.0-Guardrail).
|
119 |
-
|
120 |
-
## License:
|
121 |
-
This model is released under the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license). For a custom license, please contact [cosmos-license@nvidia.com](mailto:cosmos-license@nvidia.com).
|
122 |
-
|
123 |
-
Under the NVIDIA Open Model License, NVIDIA confirms:
|
124 |
-
|
125 |
-
* Models are commercially usable.
|
126 |
-
* You are free to create and distribute Derivative Models.
|
127 |
-
* NVIDIA does not claim ownership to any outputs generated using the Models or Derivative Models.
|
128 |
-
|
129 |
-
**Important Note**: If you bypass, disable, reduce the efficacy of, or circumvent any technical limitation, safety guardrail or
|
130 |
-
associated safety guardrail hyperparameter, encryption, security, digital rights management, or authentication mechanism contained
|
131 |
-
in the Model, your rights under [NVIDIA Open Model License Agreement](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license) will automatically terminate.
|
132 |
-
|
133 |
-
**Additional Information**: [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://github.com/meta-llama/llama-models/blob/main/models/llama2/LICENSE).
|
134 |
-
|
135 |
-
## Model Architecture:
|
136 |
-
|
137 |
-
* **Aegis**: Llama 2 backbone
|
138 |
-
* **Video Content Safety Filter**: MLP backbone using SigLIP embeddings
|
139 |
-
* **Face Blur Filter**: ResNet-50 backbone
|
140 |
-
|
141 |
-
## Input/Output Specifications
|
142 |
-
|
143 |
-
* **Input Type(s)**: Text, Video
|
144 |
-
* **Input Format(s)**:
|
145 |
-
* Text (str): Input prompt
|
146 |
-
* Video (np.ndarray): Video frames
|
147 |
-
* **Input Parameters**:
|
148 |
-
* Text: One-dimensional (1D)
|
149 |
-
* Video: Three-dimensional (3D)
|
150 |
-
|
151 |
-
## Output:
|
152 |
-
* **Output Type(s):** Boolean, Text, Video <br>
|
153 |
-
* **Output Format(s)**:
|
154 |
-
* Boolean: True for safe and False for unsafe
|
155 |
-
* Text (str): Reason for the unsafe determination
|
156 |
-
* Video (np.ndarray): Processed video frames where faces are blurred
|
157 |
-
* **Output Parameters**:
|
158 |
-
* Boolean: One-dimensional (1D)
|
159 |
-
* Text: One-dimensional (1D)
|
160 |
-
* Video: Three-dimensional (3D)
|
161 |
-
|
162 |
-
|
163 |
-
## Software Integration:
|
164 |
-
**Runtime Engine(s):**
|
165 |
-
* [Cosmos](https://github.com/NVIDIA/Cosmos)
|
166 |
-
|
167 |
-
**Supported Hardware Microarchitecture Compatibility:** <br>
|
168 |
-
* NVIDIA Ampere <br>
|
169 |
-
* NVIDIA Hopper <br>
|
170 |
-
**Supported Operating System(s):** Linux <br>
|
171 |
-
|
172 |
-
## Model Version:
|
173 |
-
The initial release (v1.0) of Cosmos Guardrail contains the following model:
|
174 |
-
- [Cosmos-1.0-Guardrail](https://huggingface.co/nvidia/Cosmos-1.0-Guardrail)
|
175 |
-
|
176 |
-
## Software Integration
|
177 |
-
**Runtime Engine(s):**
|
178 |
-
* [Cosmos](https://github.com/NVIDIA/Cosmos)
|
179 |
-
|
180 |
-
**Supported Hardware Microarchitecture Compatibility:**
|
181 |
-
* NVIDIA Blackwell
|
182 |
-
* NVIDIA Hopper
|
183 |
-
* NVIDIA Ampere
|
184 |
-
|
185 |
-
**Operating System(s):**
|
186 |
-
* Linux (We have not tested on other operating systems.)
|
187 |
-
|
188 |
-
|
189 |
-
# Usage
|
190 |
-
|
191 |
-
See [Cosmos](https://github.com/NVIDIA/Cosmos) on how to use the model.
|
192 |
-
|
193 |
-
Example for the prompt-checking portion of the Guardrail:
|
194 |
-
|
195 |
-
* Input: `"A dog is playing with a ball."`
|
196 |
-
* Output: Guardrail allows the generation of this video
|
197 |
-
|
198 |
-
* Input: `"A man wearing only socks."`
|
199 |
-
* Output: Guardrail blocks generation of this video
|
200 |
-
|
201 |
-
## Ethical Considerations
|
202 |
-
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
|
203 |
-
|
204 |
-
For more detailed information on ethical considerations for this model, please see the subcards of Explainability, Bias, Safety & Security, and Privacy below. Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
|
205 |
-
|
206 |
-
### Plus Plus (++) Promise
|
207 |
-
|
208 |
-
We value you, the datasets, the diversity they represent, and what we have been entrusted with. This model and its associated data have been:
|
209 |
-
* Verified to comply with current applicable disclosure laws, regulations, and industry standards.
|
210 |
-
* Verified to comply with applicable privacy labeling requirements.
|
211 |
-
* Annotated to describe the collector/source (NVIDIA or a third-party).
|
212 |
-
* Characterized for technical limitations.
|
213 |
-
* Reviewed to ensure proper disclosure is accessible to, maintained for, and in compliance with NVIDIA data subjects and their requests.
|
214 |
-
* Reviewed before release.
|
215 |
-
* Tagged for known restrictions and potential safety implications.
|
216 |
-
|
217 |
-
### Bias
|
218 |
-
|
219 |
-
Field | Response
|
220 |
-
:---------------------------------------------------------------------------------------------------|:---------------
|
221 |
-
Participation considerations from adversely impacted groups [protected classes](https://www.senate.ca.gov/content/protected-classes) in model design and testing: | None
|
222 |
-
Measures taken to mitigate against unwanted bias: | None
|
223 |
-
|
224 |
-
|
225 |
-
### Explainability
|
226 |
-
|
227 |
-
Field | Response
|
228 |
-
:------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------
|
229 |
-
Intended Application & Domain: | Content moderation for world generation
|
230 |
-
Model Type: | Ensemble
|
231 |
-
Intended Users: | Generative AI developers for world generation models
|
232 |
-
Output: | Boolean
|
233 |
-
Describe how the model works: | Check safety of input prompts or generated videos and output a safety classification
|
234 |
-
Technical Limitations: | The model may not moderate input prompt accurately and may have incorrect responses.
|
235 |
-
Verified to have met prescribed NVIDIA quality standards: | Yes
|
236 |
-
Performance Metrics: | Human Evaluation
|
237 |
-
Potential Known Risks: | The model's output can potentially classify content considered toxic, offensive, or indecent as safe.
|
238 |
-
Licensing: | Governing Terms: Use of this model is governed by the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license). Additional Information: [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://github.com/meta-llama/llama-models/blob/main/models/llama2/LICENSE).
|
239 |
-
|
240 |
-
|
241 |
-
### Privacy
|
242 |
-
|
243 |
-
Field | Response
|
244 |
-
:------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------
|
245 |
-
Generatable or reverse engineerable personal information? | None Known
|
246 |
-
Protected class data used to create this model? | None Known
|
247 |
-
Was consent obtained for any personal data used? | None Known
|
248 |
-
How often is dataset reviewed? | Before Release
|
249 |
-
Is a mechanism in place to honor data subject right of access or deletion of personal data? | Not Applicable
|
250 |
-
If personal data was collected for the development of the model, was it collected directly by NVIDIA? | Not Applicable
|
251 |
-
If personal data was collected for the development of the model by NVIDIA, do you maintain or have access to disclosures made to data subjects? | Not Applicable
|
252 |
-
If personal data was collected for the development of this AI model, was it minimized to only what was required? | Not Applicable
|
253 |
-
Is there provenance for all datasets used in training? | Yes
|
254 |
-
Does data labeling (annotation, metadata) comply with privacy laws? | Yes
|
255 |
-
Is data compliant with data subject requests for data correction or removal, if such a request was made? | Not Applicable
|
256 |
-
|
257 |
-
### Safety
|
258 |
-
|
259 |
-
Field | Response
|
260 |
-
:---------------------------------------------------|:----------------------------------
|
261 |
-
Model Application(s): | Prompt moderation for world generation
|
262 |
-
Describe the life critical impact (if present). | None Known
|
263 |
-
Use Case Restrictions: | Governing Terms: Use of this model is governed by the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license). Additional Information: [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://github.com/meta-llama/llama-models/blob/main/models/llama2/LICENSE).
|
264 |
-
Model and dataset restrictions: | The Principle of least privilege (PoLP) is applied limiting access for dataset generation and model development. Restrictions enforce dataset access during training, and dataset license constraints adhered to. Model checkpoints are made available on Hugging Face, and may become available on cloud providers' model catalog.
|
265 |
-
---
|
266 |
-
license: other
|
267 |
-
license_name: nvidia-open-model-license
|
268 |
-
license_link: >-
|
269 |
-
https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license
|
270 |
-
library_name: nemo
|
271 |
-
tags:
|
272 |
-
- nvidia
|
273 |
-
- nemo
|
274 |
-
- cosmos
|
275 |
-
extra_gated_prompt: >-
|
276 |
-
# NVIDIA Open Model License Agreement
|
277 |
-
|
278 |
-
Version Release Date: December 20, 2024
|
279 |
-
|
280 |
-
This NVIDIA Open Model License Agreement (the "<ins>Agreement</ins>") is a legal agreement between the Legal Entity You represent, or if no entity is identified, You and NVIDIA Corporation and its Affiliates ("<ins>NVIDIA</ins>") and governs Your use of the Models that NVIDIA provides to You under this Agreement. NVIDIA and You are each a "<ins>party</ins>" and collectively the "<ins>parties</ins>."
|
281 |
-
|
282 |
-
NVIDIA models released under this Agreement are intended to be used permissively and enable the further development of AI technologies. Subject to the terms of this Agreement, NVIDIA confirms that:
|
283 |
-
|
284 |
-
* Models are commercially usable.
|
285 |
-
|
286 |
-
* You are free to create and distribute Derivative Models.
|
287 |
-
|
288 |
-
* NVIDIA does not claim ownership to any outputs generated using the Models or Model Derivatives.
|
289 |
-
|
290 |
-
By using, reproducing, modifying, distributing, performing or displaying any portion or element of the Model or Derivative Model, or otherwise accepting the terms of this Agreement, you agree to be bound by this Agreement.
|
291 |
-
|
292 |
-
## 1. Definitions
|
293 |
-
|
294 |
-
The following definitions apply to this Agreement:
|
295 |
-
|
296 |
-
1.1. "<ins>NVIDIA Cosmos Model</ins>" means a multimodal Model shared under this Agreement.
|
297 |
-
|
298 |
-
1.2. "<ins>Derivative Model</ins>" means all (a) modifications to the Model, (b) works based on the Model, and (c) any other derivative works of the Model. An output is not a Derivative Model.
|
299 |
-
|
300 |
-
1.3. "<ins>Legal Entity</ins>" means the union of the acting entity and all other entities that <ins>control</ins>, are controlled by, or are under common control with that entity. For the purposes of this definition, "<ins>control</ins>" means (a) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (b) ownership of fifty percent (50%) or more of the outstanding shares, or (c) beneficial ownership of such entity.
|
301 |
-
|
302 |
-
1.4. "<ins>Model</ins>" means the machine learning model, software, checkpoints, learnt weights, algorithms, parameters, configuration files and documentation shared under this Agreement.
|
303 |
-
|
304 |
-
1.5. "<ins>You</ins>" or "<ins>Your</ins>" means an individual or Legal Entity exercising permissions granted by this Agreement.
|
305 |
-
|
306 |
-
## 2. Conditions for Use, License Grant, AI Ethics and IP Ownership
|
307 |
-
|
308 |
-
2.1. Conditions for Use. The Model and any Derivative Model are subject to additional terms as described in Section 2 and Section 3 of this Agreement and govern Your use. If You institute copyright or patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Model or a Derivative Model constitutes direct or contributory copyright or patent infringement, then any licenses granted to You under this Agreement for that Model or Derivative Model will terminate as of the date such litigation is filed. If You bypass, disable, reduce the efficacy of, or circumvent any technical limitation, safety guardrail or associated safety guardrail hyperparameter, encryption, security, digital rights management, or authentication mechanism contained in the Model, your rights under this Agreement will automatically terminate. NVIDIA may update this Agreement to comply with legal and regulatory requirements at any time and You agree to either comply with any updated license or cease Your copying, use, and distribution of the Model and any Derivative Model.
|
309 |
-
|
310 |
-
2.2. License Grant. The rights granted herein are explicitly conditioned on Your full compliance with the terms of this Agreement. Subject to the terms and conditions of this Agreement, NVIDIA hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, revocable (as stated in Section 2.1) license to publicly perform, publicly display, reproduce, use, create derivative works of, make, have made, sell, offer for sale, distribute (through multiple tiers of distribution) and import the Model.
|
311 |
-
|
312 |
-
2.3. AI Ethics. Use of the Models under the Agreement must be consistent with NVIDIA's Trustworthy AI terms found at https://www.nvidia.com/en-us/agreements/trustworthy-ai/terms/.
|
313 |
-
|
314 |
-
2.4. NVIDIA owns the Model and any Model Derivatives created by NVIDIA. Subject to NVIDIA's underlying ownership rights in the Model or its Model Derivatives, You are and will be the owner of Your Model Derivatives. NVIDIA claims no ownership rights in outputs. You are responsible for outputs and their subsequent uses. Except as expressly granted in this Agreement, (a) NVIDIA reserves all rights, interests and remedies in connection with the Model and (b) no other license or right is granted to you by implication, estoppel or otherwise.
|
315 |
-
|
316 |
-
## 3. Redistribution
|
317 |
-
|
318 |
-
You may reproduce and distribute copies of the Model or Derivative Models thereof in any medium, with or without modifications, provided that You meet the following conditions:
|
319 |
-
|
320 |
-
3.1. If you distribute the Model, You must give any other recipients of the Model a copy of this Agreement and include the following attribution notice within a "Notice" text file with such copies: "Licensed by NVIDIA Corporation under the NVIDIA Open Model License";
|
321 |
-
|
322 |
-
3.2. If you distribute or make available a NVIDIA Cosmos Model, or a product or service (including an AI model) that contains or uses a NVIDIA Cosmos Model, use a NVIDIA Cosmos Model to create a Derivative Model, or use a NVIDIA Cosmos Model or its outputs to create, train, fine tune, or otherwise improve an AI model, you will include "Built on NVIDIA Cosmos" on a related website, user interface, blogpost, about page, or product documentation; and
|
323 |
-
|
324 |
-
3.3. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Models as a whole, provided Your use, reproduction, and distribution of the Model otherwise complies with the conditions stated in this Agreement.
|
325 |
-
|
326 |
-
## 4. Trademarks
|
327 |
-
|
328 |
-
This Agreement does not grant permission to use the trade names, trademarks, service marks, or product names of NVIDIA, except as required for reasonable and customary use in describing the origin of the Model and reproducing the content of the "Notice" text file.
|
329 |
-
|
330 |
-
## **5. Disclaimer of Warranty**
|
331 |
-
|
332 |
-
**Unless required by applicable law or agreed to in writing, NVIDIA provides the Model on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Model, Derivative Models and outputs and assume any risks associated with Your exercise of permissions under this Agreement.**
|
333 |
-
|
334 |
-
## **6. Limitation of Liability**
|
335 |
-
|
336 |
-
**In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, will NVIDIA be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this Agreement or out of the use or inability to use the Model, Derivative Models or outputs (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if NVIDIA has been advised of the possibility of such damages.**
|
337 |
-
|
338 |
-
## 7. Indemnity
|
339 |
-
|
340 |
-
You will indemnify and hold harmless NVIDIA from and against any claim by any third party arising out of or related to your use or distribution of the Model, Model Derivatives or outputs.
|
341 |
-
|
342 |
-
## 8. Feedback
|
343 |
-
|
344 |
-
NVIDIA appreciates your feedback, and You agree that NVIDIA may use it without restriction or compensation to You.
|
345 |
-
|
346 |
-
## 9. Governing Law
|
347 |
-
|
348 |
-
This Agreement will be governed in all respects by the laws of the United States and the laws of the State of Delaware, without regard to conflict of laws principles or the United Nations Convention on Contracts for the International Sale of Goods. The state and federal courts residing in Santa Clara County, California will have exclusive jurisdiction over any dispute or claim arising out of or related to this Agreement, and the parties irrevocably consent to personal jurisdiction and venue in those courts; except that, either party may apply for injunctive remedies or an equivalent type of urgent legal relief in any jurisdiction.
|
349 |
-
|
350 |
-
## 10. Trade and Compliance
|
351 |
-
|
352 |
-
You agree to comply with all applicable export, import, trade and economic sanctions laws and regulations, as amended, including without limitation U.S. Export Administration Regulations and Office of Foreign Assets Control regulations. These laws include restrictions on destinations, end-users and end-use.
|
353 |
-
extra_gated_fields:
|
354 |
-
By clicking Submit below, I accept the terms of the NVIDIA Open Model License Agreement and acknowledge that I am an adult of legal age of majority in the country in which the Cosmos Models will be used and have authority to accept this Agreement: checkbox
|
355 |
-
extra_gated_description: >-
|
356 |
-
The information you provide will be collected, stored, processed and shared in accordance with the [NVIDIA Privacy Policy](https://www.nvidia.com/en-us/about-nvidia/privacy-policy/).
|
357 |
-
extra_gated_button_content: Submit
|
358 |
-
---
|
359 |
-
# **Cosmos-1.0 Guardrail**
|
360 |
-
|
361 |
-
[**Cosmos**](https://huggingface.co/collections/nvidia/cosmos-6751e884dc10e013a0a0d8e6) | [**Code**](https://github.com/NVIDIA/Cosmos) | [**Paper**](https://research.nvidia.com/publication/2025-01_cosmos-world-foundation-model-platform-physical-ai)
|
362 |
-
|
363 |
-
# Model Overview
|
364 |
-
|
365 |
-
## Description:
|
366 |
-
**Cosmos World Foundation Models**: A family of highly performant pre-trained world foundation models purpose-built for generating physics-aware videos and world states for physical AI development.
|
367 |
-
|
368 |
-
Cosmos Guardrail is a content safety model comprising of four components that enforce content safety. The components are as follows.
|
369 |
-
|
370 |
-
1. Aegis-AI-Content-Safety-LlamaGuard-LLM-Defensive-1.0: An LLM fine-tuned for content safety. It is a parameter-efficient instruction-tuned version of Llama-Guard based on Llama2-7B, which is trained on NVIDIA's Aegis Content Safety Dataset covering NVIDIA's broad taxonomy of 13 critical safety risk categories. See model card [here](https://huggingface.co/nvidia/Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0).
|
371 |
-
|
372 |
-
2. Blocklist: A set of human-curated keywords that are used to filter our corner-cases.
|
373 |
-
|
374 |
-
3. Video Content Safety Filter: A multi-class classifier model that is trained to distinguish between safe and unsafe frames of the generated video using SigLIP embeddings [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384).
|
375 |
-
|
376 |
-
4. Face Blur Filter: A pixelation filter that uses [RetinaFace](https://github.com/biubug6/Pytorch_Retinaface) to identify facial regions with high confidence scores and apply pixelation to any detections larger than 20x20 pixels.
|
377 |
-
|
378 |
-
**Model Developer**: NVIDIA
|
379 |
-
|
380 |
-
## Model Versions
|
381 |
-
|
382 |
-
Cosmos 1.0 ships with [Cosmos-1.0-Guardrail](https://huggingface.co/nvidia/Cosmos-1.0-Guardrail).
|
383 |
-
|
384 |
-
## License:
|
385 |
-
This model is released under the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license). For a custom license, please contact [cosmos-license@nvidia.com](mailto:cosmos-license@nvidia.com).
|
386 |
-
|
387 |
-
Under the NVIDIA Open Model License, NVIDIA confirms:
|
388 |
-
|
389 |
-
* Models are commercially usable.
|
390 |
-
* You are free to create and distribute Derivative Models.
|
391 |
-
* NVIDIA does not claim ownership to any outputs generated using the Models or Derivative Models.
|
392 |
-
|
393 |
-
**Important Note**: If you bypass, disable, reduce the efficacy of, or circumvent any technical limitation, safety guardrail or
|
394 |
-
associated safety guardrail hyperparameter, encryption, security, digital rights management, or authentication mechanism contained
|
395 |
-
in the Model, your rights under [NVIDIA Open Model License Agreement](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license) will automatically terminate.
|
396 |
-
|
397 |
-
**Additional Information**: [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://github.com/meta-llama/llama-models/blob/main/models/llama2/LICENSE).
|
398 |
-
|
399 |
-
## Model Architecture:
|
400 |
-
|
401 |
-
* **Aegis**: Llama 2 backbone
|
402 |
-
* **Video Content Safety Filter**: MLP backbone using SigLIP embeddings
|
403 |
-
* **Face Blur Filter**: ResNet-50 backbone
|
404 |
-
|
405 |
-
## Input/Output Specifications
|
406 |
-
|
407 |
-
* **Input Type(s)**: Text, Video
|
408 |
-
* **Input Format(s)**:
|
409 |
-
* Text (str): Input prompt
|
410 |
-
* Video (np.ndarray): Video frames
|
411 |
-
* **Input Parameters**:
|
412 |
-
* Text: One-dimensional (1D)
|
413 |
-
* Video: Three-dimensional (3D)
|
414 |
-
|
415 |
-
## Output:
|
416 |
-
* **Output Type(s):** Boolean, Text, Video <br>
|
417 |
-
* **Output Format(s)**:
|
418 |
-
* Boolean: True for safe and False for unsafe
|
419 |
-
* Text (str): Reason for the unsafe determination
|
420 |
-
* Video (np.ndarray): Processed video frames where faces are blurred
|
421 |
-
* **Output Parameters**:
|
422 |
-
* Boolean: One-dimensional (1D)
|
423 |
-
* Text: One-dimensional (1D)
|
424 |
-
* Video: Three-dimensional (3D)
|
425 |
-
|
426 |
-
|
427 |
-
## Software Integration:
|
428 |
-
**Runtime Engine(s):**
|
429 |
-
* [Cosmos](https://github.com/NVIDIA/Cosmos)
|
430 |
-
|
431 |
-
**Supported Hardware Microarchitecture Compatibility:** <br>
|
432 |
-
* NVIDIA Ampere <br>
|
433 |
-
* NVIDIA Hopper <br>
|
434 |
-
**Supported Operating System(s):** Linux <br>
|
435 |
-
|
436 |
-
## Model Version:
|
437 |
-
The initial release (v1.0) of Cosmos Guardrail contains the following model:
|
438 |
-
- [Cosmos-1.0-Guardrail](https://huggingface.co/nvidia/Cosmos-1.0-Guardrail)
|
439 |
-
|
440 |
-
## Software Integration
|
441 |
-
**Runtime Engine(s):**
|
442 |
-
* [Cosmos](https://github.com/NVIDIA/Cosmos)
|
443 |
-
|
444 |
-
**Supported Hardware Microarchitecture Compatibility:**
|
445 |
-
* NVIDIA Blackwell
|
446 |
-
* NVIDIA Hopper
|
447 |
-
* NVIDIA Ampere
|
448 |
-
|
449 |
-
**Operating System(s):**
|
450 |
-
* Linux (We have not tested on other operating systems.)
|
451 |
-
|
452 |
-
|
453 |
-
# Usage
|
454 |
-
|
455 |
-
See [Cosmos](https://github.com/NVIDIA/Cosmos) on how to use the model.
|
456 |
-
|
457 |
-
Example for the prompt-checking portion of the Guardrail:
|
458 |
-
|
459 |
-
* Input: `"A dog is playing with a ball."`
|
460 |
-
* Output: Guardrail allows the generation of this video
|
461 |
-
|
462 |
-
* Input: `"A man wearing only socks."`
|
463 |
-
* Output: Guardrail blocks generation of this video
|
464 |
-
|
465 |
-
## Ethical Considerations
|
466 |
-
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
|
467 |
-
|
468 |
-
For more detailed information on ethical considerations for this model, please see the subcards of Explainability, Bias, Safety & Security, and Privacy below. Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
|
469 |
-
|
470 |
-
### Plus Plus (++) Promise
|
471 |
-
|
472 |
-
We value you, the datasets, the diversity they represent, and what we have been entrusted with. This model and its associated data have been:
|
473 |
-
* Verified to comply with current applicable disclosure laws, regulations, and industry standards.
|
474 |
-
* Verified to comply with applicable privacy labeling requirements.
|
475 |
-
* Annotated to describe the collector/source (NVIDIA or a third-party).
|
476 |
-
* Characterized for technical limitations.
|
477 |
-
* Reviewed to ensure proper disclosure is accessible to, maintained for, and in compliance with NVIDIA data subjects and their requests.
|
478 |
-
* Reviewed before release.
|
479 |
-
* Tagged for known restrictions and potential safety implications.
|
480 |
-
|
481 |
-
### Bias
|
482 |
-
|
483 |
-
Field | Response
|
484 |
-
:---------------------------------------------------------------------------------------------------|:---------------
|
485 |
-
Participation considerations from adversely impacted groups [protected classes](https://www.senate.ca.gov/content/protected-classes) in model design and testing: | None
|
486 |
-
Measures taken to mitigate against unwanted bias: | None
|
487 |
-
|
488 |
-
|
489 |
-
### Explainability
|
490 |
-
|
491 |
-
Field | Response
|
492 |
-
:------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------
|
493 |
-
Intended Application & Domain: | Content moderation for world generation
|
494 |
-
Model Type: | Ensemble
|
495 |
-
Intended Users: | Generative AI developers for world generation models
|
496 |
-
Output: | Boolean
|
497 |
-
Describe how the model works: | Check safety of input prompts or generated videos and output a safety classification
|
498 |
-
Technical Limitations: | The model may not moderate input prompt accurately and may have incorrect responses.
|
499 |
-
Verified to have met prescribed NVIDIA quality standards: | Yes
|
500 |
-
Performance Metrics: | Human Evaluation
|
501 |
-
Potential Known Risks: | The model's output can potentially classify content considered toxic, offensive, or indecent as safe.
|
502 |
-
Licensing: | Governing Terms: Use of this model is governed by the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license). Additional Information: [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://github.com/meta-llama/llama-models/blob/main/models/llama2/LICENSE).
|
503 |
-
|
504 |
-
|
505 |
-
### Privacy
|
506 |
-
|
507 |
-
Field | Response
|
508 |
-
:------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------
|
509 |
-
Generatable or reverse engineerable personal information? | None Known
|
510 |
-
Protected class data used to create this model? | None Known
|
511 |
-
Was consent obtained for any personal data used? | None Known
|
512 |
-
How often is dataset reviewed? | Before Release
|
513 |
-
Is a mechanism in place to honor data subject right of access or deletion of personal data? | Not Applicable
|
514 |
-
If personal data was collected for the development of the model, was it collected directly by NVIDIA? | Not Applicable
|
515 |
-
If personal data was collected for the development of the model by NVIDIA, do you maintain or have access to disclosures made to data subjects? | Not Applicable
|
516 |
-
If personal data was collected for the development of this AI model, was it minimized to only what was required? | Not Applicable
|
517 |
-
Is there provenance for all datasets used in training? | Yes
|
518 |
-
Does data labeling (annotation, metadata) comply with privacy laws? | Yes
|
519 |
-
Is data compliant with data subject requests for data correction or removal, if such a request was made? | Not Applicable
|
520 |
-
|
521 |
-
### Safety
|
522 |
-
|
523 |
-
Field | Response
|
524 |
-
:---------------------------------------------------|:----------------------------------
|
525 |
-
Model Application(s): | Prompt moderation for world generation
|
526 |
-
Describe the life critical impact (if present). | None Known
|
527 |
-
Use Case Restrictions: | Governing Terms: Use of this model is governed by the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license). Additional Information: [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://github.com/meta-llama/llama-models/blob/main/models/llama2/LICENSE).
|
528 |
-
Model and dataset restrictions: | The Principle of least privilege (PoLP) is applied limiting access for dataset generation and model development. Restrictions enforce dataset access during training, and dataset license constraints adhered to. Model checkpoints are made available on Hugging Face, and may become available on cloud providers' model catalog.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/aegis/.locks/models--meta-llama--LlamaGuard-7b/0d30a7faffd5631f68ca99856c40c252b1a5839a.lock
DELETED
File without changes
|
Cosmos-1.0-Guardrail/aegis/.locks/models--meta-llama--LlamaGuard-7b/1a87b8f7340ada18ca4f047077a9d5b13882acc1.lock
DELETED
File without changes
|
Cosmos-1.0-Guardrail/aegis/.locks/models--meta-llama--LlamaGuard-7b/451134b2ddc2e78555d1e857518c54b4bdc2e87d.lock
DELETED
File without changes
|
Cosmos-1.0-Guardrail/aegis/.locks/models--meta-llama--LlamaGuard-7b/4d92c8b74f78b0e0f4b32921d13a007efcd0e0447290da6d92f787c3295b0ad8.lock
DELETED
File without changes
|
Cosmos-1.0-Guardrail/aegis/.locks/models--meta-llama--LlamaGuard-7b/5f4117005b41815881fe7f26aee4cbec8c55aa32.lock
DELETED
File without changes
|
Cosmos-1.0-Guardrail/aegis/.locks/models--meta-llama--LlamaGuard-7b/9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347.lock
DELETED
File without changes
|
Cosmos-1.0-Guardrail/aegis/.locks/models--meta-llama--LlamaGuard-7b/a19b92a679870c311122d67ae980737cf3e51424b396b3809463c4d9b06c7fcf.lock
DELETED
File without changes
|
Cosmos-1.0-Guardrail/aegis/.locks/models--meta-llama--LlamaGuard-7b/a6e931b92caff4c79c5c56282f1e89569a0ae558.lock
DELETED
File without changes
|
Cosmos-1.0-Guardrail/aegis/.locks/models--meta-llama--LlamaGuard-7b/e75756c38e88b19504b139e45c2bb1e925f3863c.lock
DELETED
File without changes
|
Cosmos-1.0-Guardrail/aegis/.locks/models--meta-llama--LlamaGuard-7b/f9e6f2ab03a3b92bf4bc6cfd6d6dcdaa8b36ab5ecf73dcfd1e8da3b5a95261a8.lock
DELETED
File without changes
|
Cosmos-1.0-Guardrail/aegis/.locks/models--nvidia--Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0/c4d110b05e852cead25fcc7426bf251eb3d15aa0.lock
DELETED
File without changes
|
Cosmos-1.0-Guardrail/aegis/.locks/models--nvidia--Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0/d79b29a0b9ab36db8038e39e847b3c81ebd56dd8d796551943ea4b43b2e6c55c.lock
DELETED
File without changes
|
Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/.no_exist/dfcfa3409b9994a4722d44e05f82e81ea73c5106/adapter_config.json
DELETED
File without changes
|
Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/.no_exist/dfcfa3409b9994a4722d44e05f82e81ea73c5106/added_tokens.json
DELETED
File without changes
|
Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/.no_exist/dfcfa3409b9994a4722d44e05f82e81ea73c5106/chat_template.jinja
DELETED
File without changes
|
Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/.no_exist/dfcfa3409b9994a4722d44e05f82e81ea73c5106/model.safetensors
DELETED
File without changes
|
Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/blobs/0d30a7faffd5631f68ca99856c40c252b1a5839a
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_from_model_config": true,
|
3 |
-
"pad_token_id": 0,
|
4 |
-
"bos_token_id": 1,
|
5 |
-
"eos_token_id": 2,
|
6 |
-
"do_sample": false,
|
7 |
-
"transformers_version": "4.35.2"
|
8 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/blobs/1a87b8f7340ada18ca4f047077a9d5b13882acc1
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"add_bos_token": true,
|
3 |
-
"add_eos_token": false,
|
4 |
-
"added_tokens_decoder": {
|
5 |
-
"0": {
|
6 |
-
"content": "<unk>",
|
7 |
-
"lstrip": false,
|
8 |
-
"normalized": false,
|
9 |
-
"rstrip": false,
|
10 |
-
"single_word": false,
|
11 |
-
"special": true
|
12 |
-
},
|
13 |
-
"1": {
|
14 |
-
"content": "<s>",
|
15 |
-
"lstrip": false,
|
16 |
-
"normalized": false,
|
17 |
-
"rstrip": false,
|
18 |
-
"single_word": false,
|
19 |
-
"special": true
|
20 |
-
},
|
21 |
-
"2": {
|
22 |
-
"content": "</s>",
|
23 |
-
"lstrip": false,
|
24 |
-
"normalized": false,
|
25 |
-
"rstrip": false,
|
26 |
-
"single_word": false,
|
27 |
-
"special": true
|
28 |
-
}
|
29 |
-
},
|
30 |
-
"bos_token": "<s>",
|
31 |
-
"chat_template": "{% if messages|length % 2 == 0 %}{% set role = 'Agent' %}{% else %}{% set role = 'User' %}{% endif %}{{ \"[INST] Task: Check if there is unsafe content in '\" + role + \"' messages in conversations according our safety policy with the below categories.\n\n<BEGIN UNSAFE CONTENT CATEGORIES>\nO1: Violence and Hate. \nShould not\n- Help people plan or engage in violence.\n- Encourage people to engage in violence.\n- Express hateful, derogatory, or demeaning sentiments against people based on sensitive personal characteristics like their race, color, religion, national origin, sexual orientation, gender, gender identity, or disability.\n- Encourage discrimination against people based on those characteristics and should not use slurs or create insults based on those characteristics.\nCan\n- Provide information on violence and discrimination.\n- Discuss the topics of hate and violence, and can discuss historical events involving violence.\nO2: Sexual Content.\nShould not\n- Engage in sexually explicit (i.e., erotic) conversations and should not encourage people to engage in sexual activities.\nCan\n- Discuss topics related to sexuality and sexual education.\n- Provide general information regarding sexual activities.\n- Provide guidance on topics related to sexual health.\nO3: Criminal Planning.\nShould not\n- Help people plan or engage in criminal activities like theft, kidnapping, or financial crimes, especially when the person indicates that they may act on the information provided to them.\n- Encourage people to engage in criminal activities or condone criminal behavior.\nCan\n- Help people understand how crimes are committed, provided that the response is not so detailed that it could be used to provide a roadmap for future crimes.\n- Help people understand how systems work that are used to prevent crimes, provided those descriptions do not provide detailed information on how to defeat those systems.\nO4: Guns and Illegal Weapons.\nShould not\n- Assist in the planning or execution of firearm or illegal weapons crimes, especially when the person indicates that they may act on the information provided to them.\n- Encourage people to engage in firearm or illegal weapons crimes or condone such behavior.\nCan\n- Discuss firearms and the arguments for and against firearm ownership.\nO5: Regulated or Controlled Substances.\nShould not\n- Encourage or assist people in the trafficking, consumption, or use of regulated or controlled substances, including but not limited to illegal drugs, tobacco, alcohol, and cannabis.\n- Assist or encourage people to create such substances when it is illegal to do so.\nCan\n- Discuss the use of regulated or controlled substances, and can provide general information on those substances (ex: what their chemical composition is and what their effects are).\n- Provide information on how those substances are manufactured, provided that the information is not so detailed as to provide step-by-step instructions for their creation.\nO6: Self-Harm.\nShould not\n- Encourage people to harm themselves.\n- Romanticize or condone self-harm or suicide.\n- Provide information regarding the methods of suicide or self-harm.\n- Provide any information or advice, other than information regarding appropriate health resources, to people who express or imply that they wish to harm themselves.\nCan\n- Provide general information regarding self-harm and suicide (ex: statistics, the mental health challenges faced by those who take these actions).\nShould\n- Provide information regarding appropriate health resources to people who imply or express the desire to harm themselves.\n<END UNSAFE CONTENT CATEGORIES>\n\n<BEGIN CONVERSATION>\n\n\" }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{% set role = 'User' %}{% elif message['role'] == 'assistant' %}{% set role = 'Agent' %}{% endif %}{{ role + ': ' + content.strip() + '\n\n' }}{% endfor %}{{ \"<END CONVERSATION>\n\nProvide your safety assessment for \" + role + \" in the above conversation:\n- First line must read 'safe' or 'unsafe'.\n- If unsafe, a second line must include a comma-separated list of violated categories. [/INST]\" }}",
|
32 |
-
"clean_up_tokenization_spaces": false,
|
33 |
-
"eos_token": "</s>",
|
34 |
-
"legacy": true,
|
35 |
-
"model_max_length": 1000000000000000019884624838656,
|
36 |
-
"pad_token": null,
|
37 |
-
"sp_model_kwargs": {},
|
38 |
-
"spaces_between_special_tokens": false,
|
39 |
-
"tokenizer_class": "LlamaTokenizer",
|
40 |
-
"unk_token": "<unk>",
|
41 |
-
"use_default_system_prompt": false
|
42 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/blobs/451134b2ddc2e78555d1e857518c54b4bdc2e87d
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bos_token": {
|
3 |
-
"content": "<s>",
|
4 |
-
"lstrip": false,
|
5 |
-
"normalized": false,
|
6 |
-
"rstrip": false,
|
7 |
-
"single_word": false
|
8 |
-
},
|
9 |
-
"eos_token": {
|
10 |
-
"content": "</s>",
|
11 |
-
"lstrip": false,
|
12 |
-
"normalized": false,
|
13 |
-
"rstrip": false,
|
14 |
-
"single_word": false
|
15 |
-
},
|
16 |
-
"unk_token": {
|
17 |
-
"content": "<unk>",
|
18 |
-
"lstrip": false,
|
19 |
-
"normalized": false,
|
20 |
-
"rstrip": false,
|
21 |
-
"single_word": false
|
22 |
-
}
|
23 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/blobs/5f4117005b41815881fe7f26aee4cbec8c55aa32
DELETED
@@ -1,298 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"metadata": {
|
3 |
-
"total_size": 13476831232
|
4 |
-
},
|
5 |
-
"weight_map": {
|
6 |
-
"lm_head.weight": "model-00003-of-00003.safetensors",
|
7 |
-
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
8 |
-
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
9 |
-
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
-
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
-
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
-
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
13 |
-
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
-
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
-
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
-
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
-
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
18 |
-
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
-
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
-
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
-
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
22 |
-
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
-
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
-
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
-
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
-
"model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
27 |
-
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
28 |
-
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
-
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
-
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
31 |
-
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
-
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
-
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
-
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
35 |
-
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
36 |
-
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
37 |
-
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
38 |
-
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
39 |
-
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
40 |
-
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
41 |
-
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
42 |
-
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
43 |
-
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
44 |
-
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
45 |
-
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
-
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
-
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
48 |
-
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
49 |
-
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
-
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
-
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
-
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
53 |
-
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
54 |
-
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
-
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
-
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
-
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
58 |
-
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
-
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
-
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
-
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
-
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
63 |
-
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
64 |
-
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
-
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
-
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
67 |
-
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
-
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
-
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
-
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
-
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
72 |
-
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
-
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
-
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
-
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
76 |
-
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
-
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
-
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
-
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
80 |
-
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
81 |
-
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
-
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
-
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
-
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
85 |
-
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
-
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
-
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
-
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
-
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
90 |
-
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
-
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
-
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
-
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
94 |
-
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
-
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
-
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
-
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
-
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
99 |
-
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
-
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
-
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
-
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
103 |
-
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
-
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
-
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
-
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
-
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
108 |
-
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
-
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
-
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
-
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
112 |
-
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
-
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
-
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
-
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
-
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
117 |
-
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
118 |
-
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
-
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
120 |
-
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
121 |
-
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
-
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
-
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
-
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
125 |
-
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
126 |
-
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
-
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
-
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
-
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
130 |
-
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
-
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
-
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
-
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
-
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
135 |
-
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
136 |
-
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
-
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
-
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
139 |
-
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
-
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
-
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
-
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
-
"model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
144 |
-
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
145 |
-
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
146 |
-
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
147 |
-
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
148 |
-
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
-
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
-
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
-
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
152 |
-
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
153 |
-
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
154 |
-
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
155 |
-
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
156 |
-
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
157 |
-
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
158 |
-
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
159 |
-
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
160 |
-
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
161 |
-
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
162 |
-
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
163 |
-
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
164 |
-
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
165 |
-
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
166 |
-
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
167 |
-
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
168 |
-
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
169 |
-
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
170 |
-
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
171 |
-
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
172 |
-
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
173 |
-
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
174 |
-
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
175 |
-
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
176 |
-
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
177 |
-
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
178 |
-
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
179 |
-
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
180 |
-
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
181 |
-
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
182 |
-
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
183 |
-
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
184 |
-
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
185 |
-
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
186 |
-
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
187 |
-
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
188 |
-
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
189 |
-
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
190 |
-
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
-
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
192 |
-
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
193 |
-
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
194 |
-
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
-
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
-
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
197 |
-
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
198 |
-
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
199 |
-
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
200 |
-
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
201 |
-
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
202 |
-
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
203 |
-
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
204 |
-
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
205 |
-
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
206 |
-
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
207 |
-
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
208 |
-
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
-
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
210 |
-
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
211 |
-
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
212 |
-
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
-
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
-
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
215 |
-
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
216 |
-
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
-
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
-
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
-
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
220 |
-
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
-
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
-
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
-
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
224 |
-
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
225 |
-
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
-
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
-
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
228 |
-
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
229 |
-
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
-
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
-
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
-
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
233 |
-
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
234 |
-
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
235 |
-
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
-
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
-
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
238 |
-
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
-
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
-
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
-
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
-
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
243 |
-
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
-
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
-
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
246 |
-
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
247 |
-
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
-
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
-
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
-
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
-
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
252 |
-
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
-
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
-
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
-
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
256 |
-
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
257 |
-
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
-
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
-
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
260 |
-
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
261 |
-
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
-
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
-
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
-
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
265 |
-
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
-
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
-
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
-
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
-
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
270 |
-
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
-
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
-
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
273 |
-
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
274 |
-
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
275 |
-
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
-
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
-
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
278 |
-
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
279 |
-
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
280 |
-
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
-
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
-
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
283 |
-
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
284 |
-
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
-
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
-
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
-
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
288 |
-
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
289 |
-
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
-
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
-
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
292 |
-
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
293 |
-
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
-
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
-
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
296 |
-
"model.norm.weight": "model-00003-of-00003.safetensors"
|
297 |
-
}
|
298 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/blobs/9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
DELETED
Binary file (500 kB)
|
|
Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/blobs/e75756c38e88b19504b139e45c2bb1e925f3863c
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"architectures": [
|
3 |
-
"LlamaForCausalLM"
|
4 |
-
],
|
5 |
-
"attention_bias": false,
|
6 |
-
"bos_token_id": 1,
|
7 |
-
"eos_token_id": 2,
|
8 |
-
"hidden_act": "silu",
|
9 |
-
"hidden_size": 4096,
|
10 |
-
"initializer_range": 0.02,
|
11 |
-
"intermediate_size": 11008,
|
12 |
-
"max_position_embeddings": 4096,
|
13 |
-
"model_type": "llama",
|
14 |
-
"num_attention_heads": 32,
|
15 |
-
"num_hidden_layers": 32,
|
16 |
-
"num_key_value_heads": 32,
|
17 |
-
"pretraining_tp": 1,
|
18 |
-
"rms_norm_eps": 1e-05,
|
19 |
-
"rope_scaling": null,
|
20 |
-
"rope_theta": 10000.0,
|
21 |
-
"tie_word_embeddings": false,
|
22 |
-
"torch_dtype": "bfloat16",
|
23 |
-
"transformers_version": "4.35.2",
|
24 |
-
"use_cache": true,
|
25 |
-
"vocab_size": 32000
|
26 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/refs/main
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
dfcfa3409b9994a4722d44e05f82e81ea73c5106
|
|
|
|
Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/snapshots/dfcfa3409b9994a4722d44e05f82e81ea73c5106/config.json
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"architectures": [
|
3 |
-
"LlamaForCausalLM"
|
4 |
-
],
|
5 |
-
"attention_bias": false,
|
6 |
-
"bos_token_id": 1,
|
7 |
-
"eos_token_id": 2,
|
8 |
-
"hidden_act": "silu",
|
9 |
-
"hidden_size": 4096,
|
10 |
-
"initializer_range": 0.02,
|
11 |
-
"intermediate_size": 11008,
|
12 |
-
"max_position_embeddings": 4096,
|
13 |
-
"model_type": "llama",
|
14 |
-
"num_attention_heads": 32,
|
15 |
-
"num_hidden_layers": 32,
|
16 |
-
"num_key_value_heads": 32,
|
17 |
-
"pretraining_tp": 1,
|
18 |
-
"rms_norm_eps": 1e-05,
|
19 |
-
"rope_scaling": null,
|
20 |
-
"rope_theta": 10000.0,
|
21 |
-
"tie_word_embeddings": false,
|
22 |
-
"torch_dtype": "bfloat16",
|
23 |
-
"transformers_version": "4.35.2",
|
24 |
-
"use_cache": true,
|
25 |
-
"vocab_size": 32000
|
26 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/snapshots/dfcfa3409b9994a4722d44e05f82e81ea73c5106/model.safetensors.index.json
DELETED
@@ -1,298 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"metadata": {
|
3 |
-
"total_size": 13476831232
|
4 |
-
},
|
5 |
-
"weight_map": {
|
6 |
-
"lm_head.weight": "model-00003-of-00003.safetensors",
|
7 |
-
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
8 |
-
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
9 |
-
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
-
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
-
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
-
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
13 |
-
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
-
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
-
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
-
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
-
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
18 |
-
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
-
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
-
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
-
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
22 |
-
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
-
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
-
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
-
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
-
"model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
27 |
-
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
28 |
-
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
-
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
-
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
31 |
-
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
-
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
-
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
-
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
35 |
-
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
36 |
-
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
37 |
-
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
38 |
-
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
39 |
-
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
40 |
-
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
41 |
-
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
42 |
-
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
43 |
-
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
44 |
-
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
45 |
-
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
-
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
-
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
48 |
-
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
49 |
-
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
-
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
-
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
-
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
53 |
-
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
54 |
-
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
-
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
-
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
-
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
58 |
-
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
-
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
-
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
-
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
-
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
63 |
-
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
64 |
-
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
-
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
-
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
67 |
-
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
-
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
-
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
-
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
-
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
72 |
-
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
-
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
-
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
-
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
76 |
-
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
-
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
-
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
-
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
80 |
-
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
81 |
-
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
-
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
-
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
-
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
85 |
-
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
-
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
-
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
-
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
-
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
90 |
-
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
-
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
-
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
-
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
94 |
-
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
-
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
-
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
-
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
-
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
99 |
-
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
-
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
-
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
-
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
103 |
-
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
-
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
-
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
-
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
-
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
108 |
-
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
-
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
-
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
-
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
112 |
-
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
-
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
-
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
-
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
-
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
117 |
-
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
118 |
-
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
-
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
120 |
-
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
121 |
-
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
-
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
-
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
-
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
125 |
-
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
126 |
-
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
-
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
-
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
-
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
130 |
-
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
-
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
-
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
-
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
-
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
135 |
-
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
136 |
-
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
-
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
-
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
139 |
-
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
-
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
-
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
-
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
-
"model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
144 |
-
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
145 |
-
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
146 |
-
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
147 |
-
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
148 |
-
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
-
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
-
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
-
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
152 |
-
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
153 |
-
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
154 |
-
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
155 |
-
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
156 |
-
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
157 |
-
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
158 |
-
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
159 |
-
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
160 |
-
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
161 |
-
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
162 |
-
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
163 |
-
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
164 |
-
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
165 |
-
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
166 |
-
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
167 |
-
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
168 |
-
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
169 |
-
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
170 |
-
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
171 |
-
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
172 |
-
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
173 |
-
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
174 |
-
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
175 |
-
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
176 |
-
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
177 |
-
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
178 |
-
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
179 |
-
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
180 |
-
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
181 |
-
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
182 |
-
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
183 |
-
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
184 |
-
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
185 |
-
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
186 |
-
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
187 |
-
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
188 |
-
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
189 |
-
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
190 |
-
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
-
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
192 |
-
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
193 |
-
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
194 |
-
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
-
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
-
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
197 |
-
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
198 |
-
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
199 |
-
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
200 |
-
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
201 |
-
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
202 |
-
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
203 |
-
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
204 |
-
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
205 |
-
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
206 |
-
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
207 |
-
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
208 |
-
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
-
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
210 |
-
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
211 |
-
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
212 |
-
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
-
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
-
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
215 |
-
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
216 |
-
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
-
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
-
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
-
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
220 |
-
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
-
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
-
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
-
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
224 |
-
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
225 |
-
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
-
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
-
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
228 |
-
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
229 |
-
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
-
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
-
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
-
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
233 |
-
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
234 |
-
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
235 |
-
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
-
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
-
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
238 |
-
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
-
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
-
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
-
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
-
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
243 |
-
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
-
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
-
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
246 |
-
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
247 |
-
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
-
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
-
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
-
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
-
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
252 |
-
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
-
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
-
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
-
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
256 |
-
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
257 |
-
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
-
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
-
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
260 |
-
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
261 |
-
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
-
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
-
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
-
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
265 |
-
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
-
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
-
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
-
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
-
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
270 |
-
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
-
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
-
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
273 |
-
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
274 |
-
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
275 |
-
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
-
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
-
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
278 |
-
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
279 |
-
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
280 |
-
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
-
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
-
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
283 |
-
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
284 |
-
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
-
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
-
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
-
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
288 |
-
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
289 |
-
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
-
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
-
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
292 |
-
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
293 |
-
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
-
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
-
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
296 |
-
"model.norm.weight": "model-00003-of-00003.safetensors"
|
297 |
-
}
|
298 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/snapshots/dfcfa3409b9994a4722d44e05f82e81ea73c5106/special_tokens_map.json
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bos_token": {
|
3 |
-
"content": "<s>",
|
4 |
-
"lstrip": false,
|
5 |
-
"normalized": false,
|
6 |
-
"rstrip": false,
|
7 |
-
"single_word": false
|
8 |
-
},
|
9 |
-
"eos_token": {
|
10 |
-
"content": "</s>",
|
11 |
-
"lstrip": false,
|
12 |
-
"normalized": false,
|
13 |
-
"rstrip": false,
|
14 |
-
"single_word": false
|
15 |
-
},
|
16 |
-
"unk_token": {
|
17 |
-
"content": "<unk>",
|
18 |
-
"lstrip": false,
|
19 |
-
"normalized": false,
|
20 |
-
"rstrip": false,
|
21 |
-
"single_word": false
|
22 |
-
}
|
23 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/snapshots/dfcfa3409b9994a4722d44e05f82e81ea73c5106/tokenizer.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/snapshots/dfcfa3409b9994a4722d44e05f82e81ea73c5106/tokenizer.model
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
-
size 499723
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/aegis/models--meta-llama--LlamaGuard-7b/snapshots/dfcfa3409b9994a4722d44e05f82e81ea73c5106/tokenizer_config.json
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"add_bos_token": true,
|
3 |
-
"add_eos_token": false,
|
4 |
-
"added_tokens_decoder": {
|
5 |
-
"0": {
|
6 |
-
"content": "<unk>",
|
7 |
-
"lstrip": false,
|
8 |
-
"normalized": false,
|
9 |
-
"rstrip": false,
|
10 |
-
"single_word": false,
|
11 |
-
"special": true
|
12 |
-
},
|
13 |
-
"1": {
|
14 |
-
"content": "<s>",
|
15 |
-
"lstrip": false,
|
16 |
-
"normalized": false,
|
17 |
-
"rstrip": false,
|
18 |
-
"single_word": false,
|
19 |
-
"special": true
|
20 |
-
},
|
21 |
-
"2": {
|
22 |
-
"content": "</s>",
|
23 |
-
"lstrip": false,
|
24 |
-
"normalized": false,
|
25 |
-
"rstrip": false,
|
26 |
-
"single_word": false,
|
27 |
-
"special": true
|
28 |
-
}
|
29 |
-
},
|
30 |
-
"bos_token": "<s>",
|
31 |
-
"chat_template": "{% if messages|length % 2 == 0 %}{% set role = 'Agent' %}{% else %}{% set role = 'User' %}{% endif %}{{ \"[INST] Task: Check if there is unsafe content in '\" + role + \"' messages in conversations according our safety policy with the below categories.\n\n<BEGIN UNSAFE CONTENT CATEGORIES>\nO1: Violence and Hate. \nShould not\n- Help people plan or engage in violence.\n- Encourage people to engage in violence.\n- Express hateful, derogatory, or demeaning sentiments against people based on sensitive personal characteristics like their race, color, religion, national origin, sexual orientation, gender, gender identity, or disability.\n- Encourage discrimination against people based on those characteristics and should not use slurs or create insults based on those characteristics.\nCan\n- Provide information on violence and discrimination.\n- Discuss the topics of hate and violence, and can discuss historical events involving violence.\nO2: Sexual Content.\nShould not\n- Engage in sexually explicit (i.e., erotic) conversations and should not encourage people to engage in sexual activities.\nCan\n- Discuss topics related to sexuality and sexual education.\n- Provide general information regarding sexual activities.\n- Provide guidance on topics related to sexual health.\nO3: Criminal Planning.\nShould not\n- Help people plan or engage in criminal activities like theft, kidnapping, or financial crimes, especially when the person indicates that they may act on the information provided to them.\n- Encourage people to engage in criminal activities or condone criminal behavior.\nCan\n- Help people understand how crimes are committed, provided that the response is not so detailed that it could be used to provide a roadmap for future crimes.\n- Help people understand how systems work that are used to prevent crimes, provided those descriptions do not provide detailed information on how to defeat those systems.\nO4: Guns and Illegal Weapons.\nShould not\n- Assist in the planning or execution of firearm or illegal weapons crimes, especially when the person indicates that they may act on the information provided to them.\n- Encourage people to engage in firearm or illegal weapons crimes or condone such behavior.\nCan\n- Discuss firearms and the arguments for and against firearm ownership.\nO5: Regulated or Controlled Substances.\nShould not\n- Encourage or assist people in the trafficking, consumption, or use of regulated or controlled substances, including but not limited to illegal drugs, tobacco, alcohol, and cannabis.\n- Assist or encourage people to create such substances when it is illegal to do so.\nCan\n- Discuss the use of regulated or controlled substances, and can provide general information on those substances (ex: what their chemical composition is and what their effects are).\n- Provide information on how those substances are manufactured, provided that the information is not so detailed as to provide step-by-step instructions for their creation.\nO6: Self-Harm.\nShould not\n- Encourage people to harm themselves.\n- Romanticize or condone self-harm or suicide.\n- Provide information regarding the methods of suicide or self-harm.\n- Provide any information or advice, other than information regarding appropriate health resources, to people who express or imply that they wish to harm themselves.\nCan\n- Provide general information regarding self-harm and suicide (ex: statistics, the mental health challenges faced by those who take these actions).\nShould\n- Provide information regarding appropriate health resources to people who imply or express the desire to harm themselves.\n<END UNSAFE CONTENT CATEGORIES>\n\n<BEGIN CONVERSATION>\n\n\" }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{% set role = 'User' %}{% elif message['role'] == 'assistant' %}{% set role = 'Agent' %}{% endif %}{{ role + ': ' + content.strip() + '\n\n' }}{% endfor %}{{ \"<END CONVERSATION>\n\nProvide your safety assessment for \" + role + \" in the above conversation:\n- First line must read 'safe' or 'unsafe'.\n- If unsafe, a second line must include a comma-separated list of violated categories. [/INST]\" }}",
|
32 |
-
"clean_up_tokenization_spaces": false,
|
33 |
-
"eos_token": "</s>",
|
34 |
-
"legacy": true,
|
35 |
-
"model_max_length": 1000000000000000019884624838656,
|
36 |
-
"pad_token": null,
|
37 |
-
"sp_model_kwargs": {},
|
38 |
-
"spaces_between_special_tokens": false,
|
39 |
-
"tokenizer_class": "LlamaTokenizer",
|
40 |
-
"unk_token": "<unk>",
|
41 |
-
"use_default_system_prompt": false
|
42 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/aegis/models--nvidia--Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0/blobs/c4d110b05e852cead25fcc7426bf251eb3d15aa0
DELETED
@@ -1,33 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"alpha_pattern": {},
|
3 |
-
"auto_mapping": null,
|
4 |
-
"base_model_name_or_path": "/workspace/hugging_face/hub/models--meta-llama--LlamaGuard-7b/snapshots/3e764390d6b39028ddea5b20603c89476107b41e/",
|
5 |
-
"bias": "none",
|
6 |
-
"fan_in_fan_out": false,
|
7 |
-
"inference_mode": true,
|
8 |
-
"init_lora_weights": true,
|
9 |
-
"layers_pattern": null,
|
10 |
-
"layers_to_transform": null,
|
11 |
-
"loftq_config": {},
|
12 |
-
"lora_alpha": 32,
|
13 |
-
"lora_dropout": 0.05,
|
14 |
-
"megatron_config": null,
|
15 |
-
"megatron_core": "megatron.core",
|
16 |
-
"modules_to_save": null,
|
17 |
-
"peft_type": "LORA",
|
18 |
-
"r": 16,
|
19 |
-
"rank_pattern": {},
|
20 |
-
"revision": null,
|
21 |
-
"target_modules": [
|
22 |
-
"v_proj",
|
23 |
-
"lm_head",
|
24 |
-
"k_proj",
|
25 |
-
"up_proj",
|
26 |
-
"gate_proj",
|
27 |
-
"q_proj",
|
28 |
-
"down_proj",
|
29 |
-
"o_proj"
|
30 |
-
],
|
31 |
-
"task_type": "CAUSAL_LM",
|
32 |
-
"use_rslora": false
|
33 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/aegis/models--nvidia--Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0/blobs/d79b29a0b9ab36db8038e39e847b3c81ebd56dd8d796551943ea4b43b2e6c55c
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d79b29a0b9ab36db8038e39e847b3c81ebd56dd8d796551943ea4b43b2e6c55c
|
3 |
-
size 162278280
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/aegis/models--nvidia--Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0/refs/main
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
f54cb2302ee876705dc0f7df2288f442c034b2f3
|
|
|
|
Cosmos-1.0-Guardrail/aegis/models--nvidia--Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0/snapshots/f54cb2302ee876705dc0f7df2288f442c034b2f3/adapter_config.json
DELETED
@@ -1,33 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"alpha_pattern": {},
|
3 |
-
"auto_mapping": null,
|
4 |
-
"base_model_name_or_path": "/workspace/hugging_face/hub/models--meta-llama--LlamaGuard-7b/snapshots/3e764390d6b39028ddea5b20603c89476107b41e/",
|
5 |
-
"bias": "none",
|
6 |
-
"fan_in_fan_out": false,
|
7 |
-
"inference_mode": true,
|
8 |
-
"init_lora_weights": true,
|
9 |
-
"layers_pattern": null,
|
10 |
-
"layers_to_transform": null,
|
11 |
-
"loftq_config": {},
|
12 |
-
"lora_alpha": 32,
|
13 |
-
"lora_dropout": 0.05,
|
14 |
-
"megatron_config": null,
|
15 |
-
"megatron_core": "megatron.core",
|
16 |
-
"modules_to_save": null,
|
17 |
-
"peft_type": "LORA",
|
18 |
-
"r": 16,
|
19 |
-
"rank_pattern": {},
|
20 |
-
"revision": null,
|
21 |
-
"target_modules": [
|
22 |
-
"v_proj",
|
23 |
-
"lm_head",
|
24 |
-
"k_proj",
|
25 |
-
"up_proj",
|
26 |
-
"gate_proj",
|
27 |
-
"q_proj",
|
28 |
-
"down_proj",
|
29 |
-
"o_proj"
|
30 |
-
],
|
31 |
-
"task_type": "CAUSAL_LM",
|
32 |
-
"use_rslora": false
|
33 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/aegis/models--nvidia--Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0/snapshots/f54cb2302ee876705dc0f7df2288f442c034b2f3/adapter_model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d79b29a0b9ab36db8038e39e847b3c81ebd56dd8d796551943ea4b43b2e6c55c
|
3 |
-
size 162278280
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/blocklist/custom/branding
DELETED
@@ -1,209 +0,0 @@
|
|
1 |
-
3M
|
2 |
-
Acura
|
3 |
-
Adidas
|
4 |
-
Airpods
|
5 |
-
Armani
|
6 |
-
AstraZeneca
|
7 |
-
Aston Martin
|
8 |
-
AMD
|
9 |
-
Amy Somerville
|
10 |
-
Anthony Theakston
|
11 |
-
AT&T
|
12 |
-
Audi
|
13 |
-
Aventador
|
14 |
-
Barbie
|
15 |
-
Batman
|
16 |
-
Batmobile
|
17 |
-
Bayer
|
18 |
-
Bently
|
19 |
-
BMW
|
20 |
-
Boston Dynamics
|
21 |
-
Blue Origin
|
22 |
-
Bosch
|
23 |
-
Brawl Stars
|
24 |
-
Brokis
|
25 |
-
Budweiser
|
26 |
-
Burger King
|
27 |
-
Bugatti
|
28 |
-
Burberry
|
29 |
-
Buick
|
30 |
-
Cadiliac
|
31 |
-
Canon
|
32 |
-
Cartier
|
33 |
-
Cassina
|
34 |
-
Chanel
|
35 |
-
Chick-fil-A
|
36 |
-
Cisco
|
37 |
-
Chevron
|
38 |
-
Chromebook
|
39 |
-
Chrystler
|
40 |
-
Citroen
|
41 |
-
Colgate
|
42 |
-
CocaCola
|
43 |
-
Countach
|
44 |
-
DC Comics
|
45 |
-
Daimler
|
46 |
-
Dell
|
47 |
-
DHL
|
48 |
-
Dior
|
49 |
-
Disney
|
50 |
-
Duracell
|
51 |
-
Dunkin Donuts
|
52 |
-
Eichholtz
|
53 |
-
Entler Studio
|
54 |
-
Elemento
|
55 |
-
Electrolux
|
56 |
-
Estee Lauder
|
57 |
-
Exxon
|
58 |
-
Fedex
|
59 |
-
Ferrari
|
60 |
-
Ferdinand Kramer
|
61 |
-
Fiat
|
62 |
-
Fiskars
|
63 |
-
Fisker
|
64 |
-
Ford
|
65 |
-
Fortnite
|
66 |
-
Gatorade
|
67 |
-
Gandalf
|
68 |
-
Gameboy
|
69 |
-
Gamecube
|
70 |
-
General Motors
|
71 |
-
Gillette
|
72 |
-
Glock
|
73 |
-
GMC
|
74 |
-
Graef
|
75 |
-
Grant Featherston Contour
|
76 |
-
Gucci
|
77 |
-
Gulfstream
|
78 |
-
Gundam
|
79 |
-
Haier
|
80 |
-
Harley Davidson
|
81 |
-
Harry Potter
|
82 |
-
Heineken
|
83 |
-
Hennessy
|
84 |
-
Hermes
|
85 |
-
Hitachi
|
86 |
-
Hogwarts
|
87 |
-
Homepod
|
88 |
-
Honda
|
89 |
-
Honeywell
|
90 |
-
Hoka
|
91 |
-
Huawei
|
92 |
-
Huracan
|
93 |
-
Ikea
|
94 |
-
Imac
|
95 |
-
Ipad
|
96 |
-
Iphone
|
97 |
-
Ipod
|
98 |
-
Isuzu
|
99 |
-
Infiniti
|
100 |
-
Intel
|
101 |
-
Jabulani
|
102 |
-
John Deere
|
103 |
-
John Pomp Studios
|
104 |
-
Kelloggs
|
105 |
-
KFC
|
106 |
-
Kia
|
107 |
-
Land Rover
|
108 |
-
Lamborghini
|
109 |
-
Lancel
|
110 |
-
Lego
|
111 |
-
Lenovo
|
112 |
-
Lexus
|
113 |
-
LG
|
114 |
-
L'Oreal
|
115 |
-
Lockheed
|
116 |
-
Louis Vuitton
|
117 |
-
Lululemon
|
118 |
-
Macbook
|
119 |
-
Martinelli Luce
|
120 |
-
Mattel
|
121 |
-
Mazda
|
122 |
-
McDonalds
|
123 |
-
McDonald's
|
124 |
-
McClaren
|
125 |
-
Medtronic
|
126 |
-
Mercedes
|
127 |
-
Mettler Toledo
|
128 |
-
Michelin
|
129 |
-
Microsoft
|
130 |
-
Mini Cooper
|
131 |
-
Mitsubishi
|
132 |
-
Miura
|
133 |
-
MLB
|
134 |
-
Mondial
|
135 |
-
Montblanc
|
136 |
-
Motopanfilo
|
137 |
-
Motorola
|
138 |
-
Mortal Kombat
|
139 |
-
Murciélago
|
140 |
-
N64
|
141 |
-
NBA
|
142 |
-
NCAA
|
143 |
-
Nike
|
144 |
-
Nintendo
|
145 |
-
Nissan
|
146 |
-
Northrop Grumman
|
147 |
-
Nokia
|
148 |
-
NVIDIA
|
149 |
-
Oakley
|
150 |
-
Panasonic
|
151 |
-
Pantene
|
152 |
-
Piaget
|
153 |
-
Pepsi
|
154 |
-
Peugeot
|
155 |
-
Philips
|
156 |
-
Playstation
|
157 |
-
Poltrona Frau
|
158 |
-
Porsche
|
159 |
-
Prada
|
160 |
-
Publix
|
161 |
-
Purina
|
162 |
-
Rakuten
|
163 |
-
Rayban
|
164 |
-
Raytheon
|
165 |
-
Reebok
|
166 |
-
Red Bull
|
167 |
-
Renault
|
168 |
-
Rimet
|
169 |
-
Rivian
|
170 |
-
Roche
|
171 |
-
Rolex
|
172 |
-
Rolls Royce
|
173 |
-
Saleen
|
174 |
-
Samsung
|
175 |
-
Schwan-Stabilo
|
176 |
-
Serapian
|
177 |
-
Shelby
|
178 |
-
Siemens
|
179 |
-
SpaceX
|
180 |
-
Starbucks
|
181 |
-
Stanley Cup
|
182 |
-
Stavros
|
183 |
-
Steiner Optics
|
184 |
-
Sonos
|
185 |
-
Sony
|
186 |
-
Skidata
|
187 |
-
Superman
|
188 |
-
Subaru
|
189 |
-
Suzuki
|
190 |
-
Taylormade
|
191 |
-
Tesla
|
192 |
-
Terminator
|
193 |
-
Toyota
|
194 |
-
Tuttuno
|
195 |
-
USPS
|
196 |
-
Vespa
|
197 |
-
Verizon
|
198 |
-
Volocopter
|
199 |
-
Volvo
|
200 |
-
Volkswagen
|
201 |
-
Walmart
|
202 |
-
Wii
|
203 |
-
WonderGlass
|
204 |
-
Woolworths
|
205 |
-
Xiaomi
|
206 |
-
Xbox
|
207 |
-
YKK
|
208 |
-
Zaha Hadid
|
209 |
-
Zuny
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/blocklist/custom/gore
DELETED
@@ -1,59 +0,0 @@
|
|
1 |
-
blood
|
2 |
-
horror
|
3 |
-
gross
|
4 |
-
gore
|
5 |
-
butcherly
|
6 |
-
brutal
|
7 |
-
zombie
|
8 |
-
crucifixion
|
9 |
-
secretion
|
10 |
-
horrific
|
11 |
-
disgusting
|
12 |
-
carnage
|
13 |
-
gritty
|
14 |
-
creepy
|
15 |
-
grotesque
|
16 |
-
gruesome
|
17 |
-
macabre
|
18 |
-
harrowing
|
19 |
-
freaky
|
20 |
-
morbid
|
21 |
-
hideous
|
22 |
-
bloodstream
|
23 |
-
horrifying
|
24 |
-
hemorrhage
|
25 |
-
lurid
|
26 |
-
sordid
|
27 |
-
bloodthirsty
|
28 |
-
ghastly
|
29 |
-
gratuitous
|
30 |
-
nightmarish
|
31 |
-
savagery
|
32 |
-
cronenberg
|
33 |
-
sadism
|
34 |
-
salacious
|
35 |
-
barbarity
|
36 |
-
gunplay
|
37 |
-
heart wrenching
|
38 |
-
ghoulish
|
39 |
-
tawdry
|
40 |
-
nauseating
|
41 |
-
titillating
|
42 |
-
bloodthirsty
|
43 |
-
pulpy
|
44 |
-
systole
|
45 |
-
fetishistic
|
46 |
-
sanguinary
|
47 |
-
discomforting
|
48 |
-
bulletstorm
|
49 |
-
slaughterous
|
50 |
-
sanguineous
|
51 |
-
bespatter
|
52 |
-
beflake
|
53 |
-
deskin
|
54 |
-
deskinned
|
55 |
-
deskinning
|
56 |
-
haunting
|
57 |
-
hauntingly
|
58 |
-
lifeless
|
59 |
-
bleeding
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/blocklist/custom/notable
DELETED
@@ -1,109 +0,0 @@
|
|
1 |
-
The Nightmare Before Christmas
|
2 |
-
Snow White and the Seven Dwarfs
|
3 |
-
Snow White
|
4 |
-
the Seven Dwarfs
|
5 |
-
Baymax
|
6 |
-
Big Hero 6
|
7 |
-
zootopia
|
8 |
-
aristocats
|
9 |
-
Mary Poppins
|
10 |
-
Inside Out
|
11 |
-
Nemo
|
12 |
-
Finding Nemo
|
13 |
-
Monsters, Inc.
|
14 |
-
Buzz Lightyear
|
15 |
-
DuckTales
|
16 |
-
101 Dalmatians
|
17 |
-
Lilo & Stitch
|
18 |
-
Mickey Mouse
|
19 |
-
Minnie Mouse
|
20 |
-
Mary Poppins
|
21 |
-
Mulan
|
22 |
-
The Lion King
|
23 |
-
Oliver & Company
|
24 |
-
Dumbo
|
25 |
-
Bugs Bunny
|
26 |
-
Daffy Duck
|
27 |
-
Porky Pig
|
28 |
-
Elmer Fudd
|
29 |
-
Tweety Bird
|
30 |
-
Sylvester the Cat
|
31 |
-
Yosemite Sam
|
32 |
-
Foghorn Leghorn
|
33 |
-
Marvin the Martian
|
34 |
-
Pepé le Pew
|
35 |
-
Superman
|
36 |
-
Batman
|
37 |
-
Wonder Woman
|
38 |
-
Green Lantern
|
39 |
-
The Flash
|
40 |
-
Aquaman
|
41 |
-
Harry Potter
|
42 |
-
Frodo Baggins
|
43 |
-
Gandalf the Grey
|
44 |
-
Bilbo Baggins
|
45 |
-
The Joker
|
46 |
-
Lex Luthor
|
47 |
-
Darkseid
|
48 |
-
Sinestro
|
49 |
-
Brainiac
|
50 |
-
Black Adam
|
51 |
-
Ra's al Ghul
|
52 |
-
The Penguin
|
53 |
-
Mr. Freeze
|
54 |
-
Lord Voldemort
|
55 |
-
Tom and Jerry
|
56 |
-
Scooby-Doo
|
57 |
-
Sylvester & Tweety
|
58 |
-
The Flintstones
|
59 |
-
Johnny Bravo
|
60 |
-
Popeye
|
61 |
-
Yogi Bear
|
62 |
-
Ant-Man
|
63 |
-
Captain America
|
64 |
-
Captain Marvel
|
65 |
-
Hawkeye
|
66 |
-
Magneto
|
67 |
-
She-Hulk
|
68 |
-
Silver Surfer
|
69 |
-
Spider-Man
|
70 |
-
Spider-Woman
|
71 |
-
Star-Lord
|
72 |
-
Thanos
|
73 |
-
Super Mario
|
74 |
-
Princess Peach
|
75 |
-
Bowser
|
76 |
-
Toadette
|
77 |
-
Yoshi
|
78 |
-
Wario
|
79 |
-
Waluigi
|
80 |
-
Donkey Kong
|
81 |
-
Diddy Kong
|
82 |
-
Rosalina
|
83 |
-
Bowser Jr.
|
84 |
-
Koopaling
|
85 |
-
Princess Zelda
|
86 |
-
Ganondorf
|
87 |
-
Pikachu
|
88 |
-
Charizard
|
89 |
-
Bulbasaur
|
90 |
-
Squirtle
|
91 |
-
Jigglypuff
|
92 |
-
Meowth
|
93 |
-
Lucario
|
94 |
-
Greninja
|
95 |
-
Mewtwo
|
96 |
-
Eevee
|
97 |
-
Trump
|
98 |
-
Monet
|
99 |
-
Mona Lisa
|
100 |
-
Jensen Huang
|
101 |
-
Mark Zuckerberg
|
102 |
-
Avatar
|
103 |
-
Obama
|
104 |
-
Oprah Winfrey
|
105 |
-
Tom Cruise
|
106 |
-
Lady Gaga
|
107 |
-
Kim Kardashian
|
108 |
-
Taylor Swift
|
109 |
-
Jennifer Lopez
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/blocklist/custom/violence
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
war
|
2 |
-
torture
|
3 |
-
murder
|
4 |
-
sniper
|
5 |
-
shotgun
|
6 |
-
rifle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/blocklist/exact_match/blocked
DELETED
@@ -1,1339 +0,0 @@
|
|
1 |
-
Abu
|
2 |
-
Adonis Creed
|
3 |
-
Aerith Gainsborough
|
4 |
-
Agatha Harkness
|
5 |
-
Agnes
|
6 |
-
Ahri
|
7 |
-
Ahsoka Tano
|
8 |
-
Aku
|
9 |
-
Akuma
|
10 |
-
Aladdin
|
11 |
-
Alan Partridge
|
12 |
-
Alex
|
13 |
-
Alex Levy
|
14 |
-
Alex the Lion
|
15 |
-
Ali G
|
16 |
-
Alice
|
17 |
-
Alpha Pig
|
18 |
-
Alphonse Elric
|
19 |
-
Alyx Vance
|
20 |
-
America Chavez
|
21 |
-
Amethyst
|
22 |
-
Amicia de Rune
|
23 |
-
Anakin
|
24 |
-
Anakin Skywalker
|
25 |
-
Anastasia
|
26 |
-
Anastasia Tremaine
|
27 |
-
Angelica Pickles
|
28 |
-
Angelina Ballerina
|
29 |
-
Anger
|
30 |
-
Angie
|
31 |
-
Angus
|
32 |
-
Anna
|
33 |
-
Annie
|
34 |
-
Anpanman
|
35 |
-
Ant-Man
|
36 |
-
Anton Chigurh
|
37 |
-
Anton Ego
|
38 |
-
Apollo Justice
|
39 |
-
Aqua Teen Carl
|
40 |
-
Aquaman
|
41 |
-
Archie Andrews
|
42 |
-
Archimedes
|
43 |
-
Ariel
|
44 |
-
Arkwright
|
45 |
-
Arlo
|
46 |
-
Arnim Zola
|
47 |
-
Arnold Shortman
|
48 |
-
Arrietty
|
49 |
-
Arthas Menethil
|
50 |
-
Arthur
|
51 |
-
Arthur Morgan
|
52 |
-
Arthur Nudge
|
53 |
-
Arthur Read
|
54 |
-
Ash Ketchum
|
55 |
-
Ashitaka
|
56 |
-
Asterix
|
57 |
-
Astrid
|
58 |
-
Astro Boy
|
59 |
-
Astroboy
|
60 |
-
Atom Ant
|
61 |
-
Atreus
|
62 |
-
Aunt Jemima
|
63 |
-
Aviva Corcovado
|
64 |
-
B.O.B.
|
65 |
-
Baba Looey
|
66 |
-
Baba Voss
|
67 |
-
Baby Bop
|
68 |
-
Baby Yoda
|
69 |
-
Bagheera
|
70 |
-
Baldrick
|
71 |
-
Baloo
|
72 |
-
Balthazar Bratt
|
73 |
-
Bambi
|
74 |
-
Bamm-Bamm Rubble
|
75 |
-
Barbie
|
76 |
-
Barley Lightfoot
|
77 |
-
Barney
|
78 |
-
Barney Rubble
|
79 |
-
Barnyard Dawg
|
80 |
-
Baron Humbert von Gikkingen
|
81 |
-
Barry B. Benson
|
82 |
-
Bart
|
83 |
-
Bart Simpson
|
84 |
-
Bartok
|
85 |
-
Bastion Narrator
|
86 |
-
Batgirl
|
87 |
-
Batman
|
88 |
-
Baymax
|
89 |
-
Bayonetta
|
90 |
-
Baze Malbus
|
91 |
-
BB-8
|
92 |
-
Beaky Buzzard
|
93 |
-
Beast and Belle
|
94 |
-
Beast Boy
|
95 |
-
Beavis
|
96 |
-
Beetle Bailey
|
97 |
-
Belle and Beast
|
98 |
-
Belle and the Beast
|
99 |
-
Bender
|
100 |
-
Benjamin Buford "Bubba" Blue
|
101 |
-
Benson
|
102 |
-
Berlioz
|
103 |
-
Bertie
|
104 |
-
Betty Boop
|
105 |
-
Betty Cooper
|
106 |
-
Betty Rubble
|
107 |
-
Bicycle Repair Man
|
108 |
-
Biff Tannen
|
109 |
-
Big Boss
|
110 |
-
Big Daddy
|
111 |
-
Big Nate
|
112 |
-
Biggie
|
113 |
-
Biggus Dickus
|
114 |
-
Bikini Bottom
|
115 |
-
Bill the Cat
|
116 |
-
Billy Mack
|
117 |
-
Birdie
|
118 |
-
Bishop
|
119 |
-
Bitzer
|
120 |
-
BJ
|
121 |
-
Black Adam
|
122 |
-
Black Knight
|
123 |
-
Black Panther
|
124 |
-
Black Widow
|
125 |
-
Blackadder
|
126 |
-
Blathers
|
127 |
-
Blondie Bumstead
|
128 |
-
Blue Beetle (Jaime Reyes)
|
129 |
-
BMO
|
130 |
-
Bo Peep
|
131 |
-
Bo-Katan Kryze
|
132 |
-
Bob Parr
|
133 |
-
Bob the Builder
|
134 |
-
Bob the Minion
|
135 |
-
Boba Fett
|
136 |
-
Bobby Hill
|
137 |
-
Boo
|
138 |
-
Boo-Boo Bear
|
139 |
-
Boog
|
140 |
-
Booker DeWitt
|
141 |
-
Boomhauer
|
142 |
-
Bow Lion
|
143 |
-
Bowser
|
144 |
-
Bowser Jr.
|
145 |
-
Bradley Jackson
|
146 |
-
Brain (Alan Powers)
|
147 |
-
Brainiac
|
148 |
-
Brainy Smurf
|
149 |
-
Brak
|
150 |
-
Brian Cohen
|
151 |
-
Bridget
|
152 |
-
Brock
|
153 |
-
Brock Samson
|
154 |
-
Brother Maynard
|
155 |
-
Bud Brigman
|
156 |
-
Buddy the Elf
|
157 |
-
Buddy Tyrannosaurus
|
158 |
-
Bugs Bunny
|
159 |
-
Bullwinkle
|
160 |
-
Buster Baxter
|
161 |
-
Buster Moon
|
162 |
-
Butt Head
|
163 |
-
Butt-Head
|
164 |
-
ButtHead
|
165 |
-
Buzz Lightyear
|
166 |
-
BuzzBee
|
167 |
-
C-3PO
|
168 |
-
Caesar
|
169 |
-
Caillou
|
170 |
-
Calcifer
|
171 |
-
Calvin
|
172 |
-
Calvin's Mom
|
173 |
-
Cap'n Crunch
|
174 |
-
Cap'n Turbot
|
175 |
-
Cappy
|
176 |
-
Captain America
|
177 |
-
Captain Crunch
|
178 |
-
Captain Falcon
|
179 |
-
Captain Gutt
|
180 |
-
Captain Haddock
|
181 |
-
Captain Huggyface
|
182 |
-
Captain Mainwaring
|
183 |
-
Captain Rex
|
184 |
-
Carl Fredricksen
|
185 |
-
Carol Danvers (Captain Marvel)
|
186 |
-
Carrie White
|
187 |
-
Cartoon mouse
|
188 |
-
Casper
|
189 |
-
Casper the Friendly Ghost
|
190 |
-
Cassandra
|
191 |
-
Cassian Andor
|
192 |
-
Catbus
|
193 |
-
Catwoman
|
194 |
-
Celeste
|
195 |
-
Chara
|
196 |
-
Charlie B. Barkin
|
197 |
-
Charlie Brown
|
198 |
-
Charlie Dog
|
199 |
-
Charlie the Tuna
|
200 |
-
Charlotte
|
201 |
-
Chef Boyardee
|
202 |
-
Chell
|
203 |
-
Chester Cheetah
|
204 |
-
Chester V
|
205 |
-
Chewbacca
|
206 |
-
Chickaletta
|
207 |
-
Chicken Joe
|
208 |
-
Chihiro Ogino
|
209 |
-
Chirrut Imwe
|
210 |
-
Chloe
|
211 |
-
Chris Kratt
|
212 |
-
Christopher Robin
|
213 |
-
Chuck Noland
|
214 |
-
Chuckie Finster
|
215 |
-
Chun-Li
|
216 |
-
Cinderella
|
217 |
-
Cindy Lou Who
|
218 |
-
Ciri
|
219 |
-
Claptrap
|
220 |
-
Clarabel
|
221 |
-
Clarence
|
222 |
-
Clarence Odbody
|
223 |
-
Clark Griswold
|
224 |
-
classical animation
|
225 |
-
Claude Cat
|
226 |
-
Cleo
|
227 |
-
Clifford
|
228 |
-
Clippy
|
229 |
-
Cloud Strife
|
230 |
-
Clumsy Smurf
|
231 |
-
Coach Beard
|
232 |
-
Coco
|
233 |
-
Cody Maverick
|
234 |
-
Cogsworth
|
235 |
-
Colonel Hathi
|
236 |
-
Colonel Miles Quaritch
|
237 |
-
Colonel Sanders
|
238 |
-
Commander Shepard
|
239 |
-
Compo Simmonite
|
240 |
-
Connie Maheswaran
|
241 |
-
Constantine
|
242 |
-
Coraline Jones
|
243 |
-
Cortana
|
244 |
-
Cory Ellison
|
245 |
-
Count Chocula
|
246 |
-
Count Dooku
|
247 |
-
Count Dracula
|
248 |
-
Cousin Eddie
|
249 |
-
Cranky
|
250 |
-
Crash Bandicoot
|
251 |
-
Crisbell
|
252 |
-
Cruella de Vil
|
253 |
-
Cruella de Ville
|
254 |
-
Cuphead
|
255 |
-
Curious George
|
256 |
-
Cyborg
|
257 |
-
Cyclops
|
258 |
-
D.Va
|
259 |
-
D.W. Read
|
260 |
-
Daddy Pig
|
261 |
-
Daddy Warbucks
|
262 |
-
Daffy Duck
|
263 |
-
Dagwood Bumstead
|
264 |
-
Daisy Duck
|
265 |
-
Dale Gribble
|
266 |
-
Daniel Tiger
|
267 |
-
Dante
|
268 |
-
Daphne Blake
|
269 |
-
Daredevil
|
270 |
-
Darkseid
|
271 |
-
Darth Vader
|
272 |
-
Dash
|
273 |
-
Dash Parr
|
274 |
-
David Brent
|
275 |
-
Deadpool
|
276 |
-
Deathstroke
|
277 |
-
Dee Dee
|
278 |
-
Del Boy
|
279 |
-
Demoman
|
280 |
-
Dennis
|
281 |
-
Dennis Mitchell
|
282 |
-
Devi D.
|
283 |
-
Dewey Duck
|
284 |
-
Dexter
|
285 |
-
Dib
|
286 |
-
Dib Membrane
|
287 |
-
Dick Tracy
|
288 |
-
Diddy Kong
|
289 |
-
Dig’em Frog
|
290 |
-
Dil Pickles
|
291 |
-
Dilbert
|
292 |
-
Din Djarin
|
293 |
-
Din Song
|
294 |
-
Disgust
|
295 |
-
Dixie Kong
|
296 |
-
Doc Hudson
|
297 |
-
Doctor Doom
|
298 |
-
Doctor Strange
|
299 |
-
Dogbert
|
300 |
-
Domino
|
301 |
-
Don Lino
|
302 |
-
Don Pteranodon
|
303 |
-
Donald Duck
|
304 |
-
Donkey Kong
|
305 |
-
Doom Slayer
|
306 |
-
Dora
|
307 |
-
Dora Marquez
|
308 |
-
Doraemon
|
309 |
-
Dorothy
|
310 |
-
Dorothy Gale
|
311 |
-
Dorothy the Dinosaur
|
312 |
-
Dorothy Turner
|
313 |
-
Dory
|
314 |
-
Doug Funnie
|
315 |
-
Dr. Cockroach
|
316 |
-
Dr. Frank-N-Furter
|
317 |
-
Dr. Girlfriend
|
318 |
-
Dr. Grace Augustine
|
319 |
-
Dr. Robotnik
|
320 |
-
Dr. Two Brains
|
321 |
-
Dracula
|
322 |
-
Drax
|
323 |
-
Drax the Destroyer
|
324 |
-
Drizella Tremaine
|
325 |
-
Duchess
|
326 |
-
Dudley Do-Right
|
327 |
-
Duffy Bear
|
328 |
-
Duke
|
329 |
-
Dumbo
|
330 |
-
Ebenezer Scrooge
|
331 |
-
Ed Bighead
|
332 |
-
Eddie Valiant
|
333 |
-
Edgar Balthazar
|
334 |
-
Edith
|
335 |
-
Edna Mode
|
336 |
-
Edward
|
337 |
-
Edward Elric
|
338 |
-
Eep Crood
|
339 |
-
Eeyore
|
340 |
-
Egghead Jr.
|
341 |
-
Elastigirl
|
342 |
-
Elektra
|
343 |
-
Ella
|
344 |
-
Ellen Ripley
|
345 |
-
Ellie
|
346 |
-
Elliot
|
347 |
-
Elmer Fudd
|
348 |
-
Elroy Jetson
|
349 |
-
Elsa
|
350 |
-
Emile
|
351 |
-
Emily
|
352 |
-
Emily Dickinson
|
353 |
-
Emily Elizabeth Howard
|
354 |
-
Emmett "Doc" Brown
|
355 |
-
Emperor Palpatine
|
356 |
-
Eren Yeager
|
357 |
-
Eric Cartman
|
358 |
-
Esmeralda
|
359 |
-
EVE
|
360 |
-
Evil Queen
|
361 |
-
Ewoks
|
362 |
-
Explosm Cyanide Character
|
363 |
-
Ezra Bridger
|
364 |
-
Fairy Godmother
|
365 |
-
Falco Lombardi
|
366 |
-
Falcon
|
367 |
-
Father Ted Crilly
|
368 |
-
Fear
|
369 |
-
Felix the Cat
|
370 |
-
Ferb Fletcher
|
371 |
-
Ferdinand
|
372 |
-
Figaro
|
373 |
-
Finn
|
374 |
-
Finn the Human
|
375 |
-
Fiona
|
376 |
-
Fireman Sam
|
377 |
-
Fishlegs
|
378 |
-
Flint Lockwood
|
379 |
-
Flit
|
380 |
-
Flo
|
381 |
-
Flounder
|
382 |
-
Flynn Rider
|
383 |
-
Foghorn Leghorn
|
384 |
-
Forky
|
385 |
-
Forrest Gump
|
386 |
-
Fox McCloud
|
387 |
-
Francine Frensky
|
388 |
-
Francine Peters
|
389 |
-
Francois Turbot
|
390 |
-
Frank Spencer
|
391 |
-
Franklin
|
392 |
-
Fred
|
393 |
-
Fred Flintstone
|
394 |
-
Frieza
|
395 |
-
Frigga
|
396 |
-
Frisk
|
397 |
-
Frosty the Snowman
|
398 |
-
Frou-Frou
|
399 |
-
Frozone
|
400 |
-
Frylock
|
401 |
-
Fudgie the Whale
|
402 |
-
Gabi
|
403 |
-
Gabriela
|
404 |
-
Gambit
|
405 |
-
Gamora
|
406 |
-
Gandalf
|
407 |
-
Ganondorf
|
408 |
-
Garfield
|
409 |
-
Garfield’s Nermal
|
410 |
-
Gargamel
|
411 |
-
Garnet
|
412 |
-
Garrus Vakarian
|
413 |
-
Gaz
|
414 |
-
Geico Gecko
|
415 |
-
General Grievous
|
416 |
-
Genie
|
417 |
-
Genji
|
418 |
-
Geoffrey the Giraffe
|
419 |
-
George Bailey
|
420 |
-
George Jetson
|
421 |
-
George McFly
|
422 |
-
George Pig
|
423 |
-
Gerald
|
424 |
-
Gerald Johanssen
|
425 |
-
Geraldine Granger
|
426 |
-
Geralt
|
427 |
-
Geralt of Rivia
|
428 |
-
Ghost Rider
|
429 |
-
Gideon
|
430 |
-
Gidget
|
431 |
-
Ginny Grainger
|
432 |
-
GIR
|
433 |
-
GLaDOS
|
434 |
-
Globox
|
435 |
-
Gloria
|
436 |
-
Gloria the Hippo
|
437 |
-
Gobber
|
438 |
-
Gohan
|
439 |
-
Goko
|
440 |
-
Goku
|
441 |
-
Goldfish Cracker
|
442 |
-
Gon Freecss
|
443 |
-
Goofy
|
444 |
-
Gordon
|
445 |
-
Gordon Freeman
|
446 |
-
Gossamer
|
447 |
-
Gotham City
|
448 |
-
Gran
|
449 |
-
Gran'ma Ben
|
450 |
-
Grand Admiral Thrawn
|
451 |
-
Grandmaster
|
452 |
-
Granny
|
453 |
-
Green Arrow
|
454 |
-
Green Lantern (Hal Jordan)
|
455 |
-
Greg Universe
|
456 |
-
Gregg
|
457 |
-
Grimace
|
458 |
-
Grogu
|
459 |
-
Grogu (Baby Yoda)
|
460 |
-
Gromit
|
461 |
-
Groot
|
462 |
-
Gru
|
463 |
-
Grug Crood
|
464 |
-
Guile
|
465 |
-
Gwen Stacy
|
466 |
-
Hagar the Horrible
|
467 |
-
Haku
|
468 |
-
HAL 9000
|
469 |
-
Hal Stewart / Tighten
|
470 |
-
Hamm
|
471 |
-
Hammy
|
472 |
-
Han Solo
|
473 |
-
Hancock
|
474 |
-
Handsome Jack
|
475 |
-
Haniwa
|
476 |
-
Happy Noodle Boy
|
477 |
-
Harley Quinn
|
478 |
-
Harold
|
479 |
-
Harry Potter
|
480 |
-
Harry Tasker
|
481 |
-
Hat Kid
|
482 |
-
Hawkeye
|
483 |
-
Heat Miser
|
484 |
-
Heather
|
485 |
-
Hector
|
486 |
-
Hector the Bulldog
|
487 |
-
Heffer Wolfe
|
488 |
-
Hei Hei
|
489 |
-
Heihachi Mishima
|
490 |
-
Heimdall
|
491 |
-
Hela
|
492 |
-
Helen Hunt
|
493 |
-
Helen Tasker
|
494 |
-
Helga Pataki
|
495 |
-
Hello Kitty
|
496 |
-
Henery Hawk
|
497 |
-
Henry
|
498 |
-
Henry the Octopus
|
499 |
-
Hera Syndulla
|
500 |
-
Hercules
|
501 |
-
Hermey the Elf
|
502 |
-
Hi-5
|
503 |
-
Hiccup
|
504 |
-
Hiro
|
505 |
-
Hisoka
|
506 |
-
Hobbes
|
507 |
-
Hogwarts
|
508 |
-
Homer
|
509 |
-
Homer Simpson
|
510 |
-
Homestar Runner
|
511 |
-
Homsar
|
512 |
-
Honest John
|
513 |
-
Horton
|
514 |
-
Howard Hughes
|
515 |
-
Hubie
|
516 |
-
Huckleberry Hound
|
517 |
-
Huey Duck
|
518 |
-
Hugo de Rune
|
519 |
-
Hulk
|
520 |
-
Human Torch
|
521 |
-
Humphrey Bogart
|
522 |
-
Hyacinth Bucket
|
523 |
-
Héctor Rivera
|
524 |
-
Ian Lightfoot
|
525 |
-
Ice King
|
526 |
-
Incontinentia Buttocks
|
527 |
-
Indiana Jones
|
528 |
-
Inkling
|
529 |
-
Inspector Clouseau
|
530 |
-
Inuyasha
|
531 |
-
Invader Skoodge
|
532 |
-
Invisible Woman
|
533 |
-
Iron Fist
|
534 |
-
Iron Man
|
535 |
-
Isaac Clarke
|
536 |
-
Isabelle
|
537 |
-
Itchy Itchiford
|
538 |
-
Ivy Valentine
|
539 |
-
Jack Dawson
|
540 |
-
Jack Skellington
|
541 |
-
Jack-Jack
|
542 |
-
Jack-Jack Parr
|
543 |
-
Jackie Brown
|
544 |
-
Jafar
|
545 |
-
Jailbreak
|
546 |
-
Jake from State Farm
|
547 |
-
Jake Sully
|
548 |
-
Jake the Dog
|
549 |
-
James
|
550 |
-
James Bond
|
551 |
-
James Henry Trotter
|
552 |
-
Jane Jetson
|
553 |
-
Jane Porter
|
554 |
-
Jasmine
|
555 |
-
Jean Grey
|
556 |
-
Jeff
|
557 |
-
Jennifer Parker
|
558 |
-
Jenny Curran
|
559 |
-
Jerry
|
560 |
-
Jesper
|
561 |
-
Jess (the Cat)
|
562 |
-
Jessica Jones
|
563 |
-
Jessica Rabbit
|
564 |
-
Jessie
|
565 |
-
Jett
|
566 |
-
Jiji
|
567 |
-
Jill Valentine
|
568 |
-
Jim Raynor
|
569 |
-
Jiminy Cricket
|
570 |
-
Jimmy Z
|
571 |
-
Jin Kazama
|
572 |
-
Jinx
|
573 |
-
Joe Camel
|
574 |
-
Joe Gardner
|
575 |
-
Joel
|
576 |
-
Joel Miller
|
577 |
-
Johann Gambolputty...
|
578 |
-
John Connor
|
579 |
-
John Marston
|
580 |
-
John McClane
|
581 |
-
John Smith
|
582 |
-
Johnny
|
583 |
-
Johnny Bravo
|
584 |
-
Johnny C. (Nny)
|
585 |
-
Johnny Loughran
|
586 |
-
JoJo McDodd
|
587 |
-
Jon Arbuckle
|
588 |
-
Josie McCoy
|
589 |
-
Judge Doom
|
590 |
-
Judy Hopps
|
591 |
-
Judy Jetson
|
592 |
-
Julian Pearce
|
593 |
-
Jyn Erso
|
594 |
-
K-2SO
|
595 |
-
K.K. Slider
|
596 |
-
Kaa
|
597 |
-
Kai
|
598 |
-
Kakashi Hatake
|
599 |
-
Kamala Khan (Ms. Marvel)
|
600 |
-
Kanga
|
601 |
-
Katchoo
|
602 |
-
Kate Bishop
|
603 |
-
Katie Mitchell
|
604 |
-
Kazooie
|
605 |
-
Kazuya Mishima
|
606 |
-
Keeley Jones
|
607 |
-
Ken
|
608 |
-
Ken Masters
|
609 |
-
Kerrigan
|
610 |
-
Kevin
|
611 |
-
Kevin McCallister
|
612 |
-
Kevin the Minion
|
613 |
-
Kiki
|
614 |
-
Killjoy
|
615 |
-
Killmonger (Erik Stevens)
|
616 |
-
Killua Zoldyck
|
617 |
-
King Arthur
|
618 |
-
King Candy
|
619 |
-
King Dedede
|
620 |
-
King Gristle Jr.
|
621 |
-
King Julien
|
622 |
-
King Knight
|
623 |
-
King Louie
|
624 |
-
King of the Hill
|
625 |
-
King Triton
|
626 |
-
King Vitamin
|
627 |
-
Kingpin
|
628 |
-
Kirby
|
629 |
-
Kitana
|
630 |
-
Kofun
|
631 |
-
Koki
|
632 |
-
Kool-Aid
|
633 |
-
Kool-Aid Man
|
634 |
-
Korath
|
635 |
-
Korg
|
636 |
-
Kowalski
|
637 |
-
Kraglin
|
638 |
-
Kratos
|
639 |
-
Kris Kringle
|
640 |
-
Kristoff
|
641 |
-
Kurapika
|
642 |
-
Kuzco
|
643 |
-
Kyle Reese
|
644 |
-
Kylo Ren
|
645 |
-
Lady Eboshi
|
646 |
-
Lady Sif
|
647 |
-
Lady Tremaine
|
648 |
-
Lando Calrissian
|
649 |
-
Lara
|
650 |
-
Lara Croft
|
651 |
-
Larry the Lobster
|
652 |
-
Lars Barriga
|
653 |
-
Leanne Grayson
|
654 |
-
Lenny
|
655 |
-
Lenore
|
656 |
-
Leon Kennedy
|
657 |
-
Levi Ackerman
|
658 |
-
Lex Luthor
|
659 |
-
Liara T'Soni
|
660 |
-
Liberty
|
661 |
-
Lieutenant Dan Taylor
|
662 |
-
Light Yagami
|
663 |
-
Lightning McQueen
|
664 |
-
Lil DeVille
|
665 |
-
Lilo
|
666 |
-
Linda Gunderson
|
667 |
-
Lindsey Brigman
|
668 |
-
Linus
|
669 |
-
Linus van Pelt
|
670 |
-
Lisa
|
671 |
-
Lisa Simpson
|
672 |
-
Little Caesar
|
673 |
-
Little Orphan Annie
|
674 |
-
Liu Kang
|
675 |
-
Logan
|
676 |
-
Loki
|
677 |
-
Lola Bunny
|
678 |
-
Lord Shen
|
679 |
-
Lorraine Baines
|
680 |
-
Lotso
|
681 |
-
Louie Duck
|
682 |
-
Luanne Platter
|
683 |
-
Lucas
|
684 |
-
Lucifer
|
685 |
-
Lucky Eddie
|
686 |
-
Lucky the Leprechaun
|
687 |
-
Lucy Van Pelt
|
688 |
-
Luigi
|
689 |
-
Luke
|
690 |
-
Luke Cage
|
691 |
-
Luke Skywalker
|
692 |
-
Luke Triton
|
693 |
-
Lumberjack
|
694 |
-
Lumière
|
695 |
-
M'Baku
|
696 |
-
Mace Windu
|
697 |
-
Madam Mim
|
698 |
-
Madame Adelaide Bonfamille
|
699 |
-
Madeline
|
700 |
-
Mae Borowski
|
701 |
-
Mafalda
|
702 |
-
Maggie Simpson
|
703 |
-
Maghra
|
704 |
-
Magilla Gorilla
|
705 |
-
Magneto
|
706 |
-
Mai Shiranui
|
707 |
-
Maisy
|
708 |
-
Malcolm Tucker
|
709 |
-
Maleficent
|
710 |
-
Mandalorian
|
711 |
-
Mandark
|
712 |
-
Mando
|
713 |
-
Manny
|
714 |
-
Marceline
|
715 |
-
Margaret Tiger
|
716 |
-
Marge
|
717 |
-
Marge Simpson
|
718 |
-
Margo
|
719 |
-
Margo Leadbetter
|
720 |
-
Maria Hill
|
721 |
-
Maria Rambeau
|
722 |
-
Marina
|
723 |
-
Mario
|
724 |
-
Marlin
|
725 |
-
Marmaduke
|
726 |
-
Marshall
|
727 |
-
Martian Manhunter
|
728 |
-
Martin Bryce
|
729 |
-
Martin Kratt
|
730 |
-
Marty
|
731 |
-
Marty McFly
|
732 |
-
Marty the Zebra
|
733 |
-
Marvin Acme
|
734 |
-
Marvin the Martian
|
735 |
-
Mary Poppins
|
736 |
-
Master Chief
|
737 |
-
Master Shake
|
738 |
-
Mater
|
739 |
-
Mavis Dracula
|
740 |
-
Maximus
|
741 |
-
Maya Fey
|
742 |
-
Mayor Goodway
|
743 |
-
Meatwad
|
744 |
-
Meeko
|
745 |
-
Meena
|
746 |
-
Mega Man
|
747 |
-
Megamind
|
748 |
-
Megara
|
749 |
-
Mei Kusakabe
|
750 |
-
Mel
|
751 |
-
Melman
|
752 |
-
Melman the Giraffe
|
753 |
-
Melody
|
754 |
-
Meowth
|
755 |
-
Merida
|
756 |
-
Merlin
|
757 |
-
Merryweather
|
758 |
-
Meta Knight
|
759 |
-
Metro Man
|
760 |
-
Micah Keith
|
761 |
-
Michigan J. Frog
|
762 |
-
Mickey Mouse
|
763 |
-
Miek
|
764 |
-
Mighty Mouse
|
765 |
-
Miguel
|
766 |
-
Miguel Rivera
|
767 |
-
Mike Wazowski
|
768 |
-
Miles Edgeworth
|
769 |
-
Miles Morales
|
770 |
-
Milo
|
771 |
-
Minion
|
772 |
-
Minnie Mouse
|
773 |
-
Miranda
|
774 |
-
Misa Amane
|
775 |
-
Misato Katsuragi
|
776 |
-
Mitch Kessler
|
777 |
-
Mitsurugi
|
778 |
-
Moana
|
779 |
-
Mojo Jojo
|
780 |
-
Monica Rambeau
|
781 |
-
Monkey D. Luffy
|
782 |
-
Monkeybone
|
783 |
-
Monstro
|
784 |
-
Mordecai
|
785 |
-
Morris the Cat
|
786 |
-
Morty Smith
|
787 |
-
Mowgli
|
788 |
-
Mr. Bean
|
789 |
-
Mr. Clean
|
790 |
-
Mr. Creosote
|
791 |
-
Mr. Eric Praline
|
792 |
-
Mr. Incredible
|
793 |
-
Mr. Krabs
|
794 |
-
Mr. Peabody
|
795 |
-
Mr. Peanut
|
796 |
-
Mr. Potato Head
|
797 |
-
Mr. Potatohead
|
798 |
-
Mr. Toad
|
799 |
-
Mr. Wilson
|
800 |
-
Mrs. Brisby
|
801 |
-
Mrs. Brown
|
802 |
-
Mrs. Gump
|
803 |
-
Mrs. Merton
|
804 |
-
Mrs. Potts
|
805 |
-
Mrs. Spider
|
806 |
-
Ms. Pac-Man
|
807 |
-
Mufasa
|
808 |
-
Muffy Crosswire
|
809 |
-
Mugman
|
810 |
-
Mugsy
|
811 |
-
Mulan
|
812 |
-
Mummy Pig
|
813 |
-
Mushu
|
814 |
-
Mystique
|
815 |
-
Nakia
|
816 |
-
Nala
|
817 |
-
Nami
|
818 |
-
Namor
|
819 |
-
Nancy
|
820 |
-
Naru
|
821 |
-
Naruto Uzumaki
|
822 |
-
Nate Shelley
|
823 |
-
Nathan
|
824 |
-
Nathan Drake
|
825 |
-
Nausicaä
|
826 |
-
Nebula
|
827 |
-
Nefertari Vivi
|
828 |
-
Negasonic Teenage Warhead
|
829 |
-
Nemo
|
830 |
-
Neo
|
831 |
-
Ness
|
832 |
-
Nessa Jenkins
|
833 |
-
Newt (Rebecca Jorden)
|
834 |
-
Neytiri
|
835 |
-
Nick Fury
|
836 |
-
Nick Wilde
|
837 |
-
Nigel
|
838 |
-
Nightwing
|
839 |
-
Nina Williams
|
840 |
-
No-Face
|
841 |
-
Nobita Nobi
|
842 |
-
Noddy
|
843 |
-
Norman
|
844 |
-
Norman Babcock
|
845 |
-
Norman Price
|
846 |
-
Obelix
|
847 |
-
Obi-Wan Kenobi
|
848 |
-
Octoling
|
849 |
-
Odie
|
850 |
-
Odin
|
851 |
-
Okoye
|
852 |
-
Olaf
|
853 |
-
Olive Oyl
|
854 |
-
Opus
|
855 |
-
Ori
|
856 |
-
Oscar
|
857 |
-
Oswald
|
858 |
-
Ozzie
|
859 |
-
Pac-Man
|
860 |
-
Paddington Bear
|
861 |
-
Padmé Amidala
|
862 |
-
Palpatine
|
863 |
-
Papa Smurf
|
864 |
-
Pappa Smurf
|
865 |
-
Papyrus
|
866 |
-
Pascal
|
867 |
-
Patrick Star
|
868 |
-
Patsy
|
869 |
-
Patsy Stone
|
870 |
-
Patti Mayonnaise
|
871 |
-
Pazu
|
872 |
-
Pebbles Flintstone
|
873 |
-
Peggy Carter
|
874 |
-
Peggy Hill
|
875 |
-
Penelope Pussycat
|
876 |
-
Pepe Le Pew
|
877 |
-
Peppa Pig
|
878 |
-
Percy
|
879 |
-
Perdita
|
880 |
-
Peridot
|
881 |
-
Perry
|
882 |
-
Perry the Platypus
|
883 |
-
Peter B. Parker
|
884 |
-
Peter Griffin
|
885 |
-
Peter Pan
|
886 |
-
Peter Parker
|
887 |
-
Peter Rabbit
|
888 |
-
Phil DeVille
|
889 |
-
Phineas Flynn
|
890 |
-
Phoebe Heyerdahl
|
891 |
-
Phoenix Wright
|
892 |
-
Phoney Bone
|
893 |
-
Piglet
|
894 |
-
Pikachu
|
895 |
-
Pillsbury Doughboy
|
896 |
-
Pingu
|
897 |
-
Pink Panther
|
898 |
-
Pinocchio
|
899 |
-
Plague Knight
|
900 |
-
Play-Doh Pete
|
901 |
-
Pluto
|
902 |
-
Po
|
903 |
-
Pocahontas
|
904 |
-
Poe Dameron
|
905 |
-
PomPom
|
906 |
-
Pongo
|
907 |
-
Pontius Pilate
|
908 |
-
Ponyo
|
909 |
-
Popeye
|
910 |
-
Poppin' Fresh (Pillsbury Doughboy)
|
911 |
-
Poppy Parnell
|
912 |
-
Porkchop
|
913 |
-
Porky Pig
|
914 |
-
Postman Pat
|
915 |
-
Potato Head
|
916 |
-
Prince Charming
|
917 |
-
Prince Eric
|
918 |
-
Prince Phillip
|
919 |
-
Prince Wednesday
|
920 |
-
Princess Bubblegum
|
921 |
-
Princess Leia
|
922 |
-
Princess Leia Organa
|
923 |
-
Princess Mononoke
|
924 |
-
Princess Peach
|
925 |
-
Princess Presto
|
926 |
-
Professor Layton
|
927 |
-
Professor X
|
928 |
-
Proto Man
|
929 |
-
Pumbaa
|
930 |
-
Punisher
|
931 |
-
Puss
|
932 |
-
Puss in Boots
|
933 |
-
Puss n Boots
|
934 |
-
Pyramid Head
|
935 |
-
Pyro
|
936 |
-
Queen Kane
|
937 |
-
Queen Xenomorph
|
938 |
-
Qui-Gon Jinn
|
939 |
-
Quick Draw McGraw
|
940 |
-
Quicksilver
|
941 |
-
R2-D2
|
942 |
-
Rabbids
|
943 |
-
Rafael
|
944 |
-
Raiden
|
945 |
-
Ralph
|
946 |
-
Ralph Wolf
|
947 |
-
Ralphie Parker
|
948 |
-
Randall Boggs
|
949 |
-
Rapunzel
|
950 |
-
Rayman
|
951 |
-
Rebecca Welton
|
952 |
-
Red and Rover
|
953 |
-
Red Skull
|
954 |
-
Rei Ayanami
|
955 |
-
Reinhardt
|
956 |
-
Remy
|
957 |
-
Ren Höek
|
958 |
-
Resetti
|
959 |
-
Rex
|
960 |
-
Rey
|
961 |
-
Reyna
|
962 |
-
Rheneas
|
963 |
-
Rhett Butler
|
964 |
-
Richie Rich
|
965 |
-
Rick
|
966 |
-
Rick Mitchell
|
967 |
-
Rick Sanchez
|
968 |
-
Rico
|
969 |
-
Ridley
|
970 |
-
Rigby
|
971 |
-
Rigsby
|
972 |
-
RJ
|
973 |
-
Road Runner
|
974 |
-
Robin (Dick Grayson)
|
975 |
-
Robo-Dog
|
976 |
-
Rocket Raccoon
|
977 |
-
Rocko
|
978 |
-
Rocky Balboa
|
979 |
-
Rodney Copperbottom
|
980 |
-
Rodney Trotter
|
981 |
-
Roger Klotz
|
982 |
-
Roger Rabbit
|
983 |
-
Roger the Shrubber
|
984 |
-
Ronald McDonald
|
985 |
-
Ronan the Accuser
|
986 |
-
Roo
|
987 |
-
Roronoa Zoro
|
988 |
-
Rosalina
|
989 |
-
Rose DeWitt Bukater
|
990 |
-
Rosie
|
991 |
-
Rosita
|
992 |
-
Roxanne Ritchi
|
993 |
-
Roy Kent
|
994 |
-
Roy Mustang
|
995 |
-
Rudolph
|
996 |
-
Ruffnut
|
997 |
-
Russell
|
998 |
-
Ryder
|
999 |
-
Ryu
|
1000 |
-
Sabine Wren
|
1001 |
-
Sadie Miller
|
1002 |
-
Sage
|
1003 |
-
Sailor Moon
|
1004 |
-
Sakura Haruno
|
1005 |
-
Salad Fingers
|
1006 |
-
Salty
|
1007 |
-
Sam
|
1008 |
-
Sam Fisher
|
1009 |
-
Sam Sheepdog
|
1010 |
-
Sam Sparks
|
1011 |
-
Samurai Jack
|
1012 |
-
Samus Aran
|
1013 |
-
San
|
1014 |
-
Sandy Cheeks
|
1015 |
-
Sandy Crood
|
1016 |
-
Santa
|
1017 |
-
Santa Claus
|
1018 |
-
Santa Claus (Kurt Russell)
|
1019 |
-
Sarah Connor
|
1020 |
-
Sarge
|
1021 |
-
Sasuke
|
1022 |
-
Satsuki
|
1023 |
-
Saw Gerrera
|
1024 |
-
Scarlet Overkill
|
1025 |
-
Scarlet Witch
|
1026 |
-
Scarlett O'Hara
|
1027 |
-
Schroeder
|
1028 |
-
Scooby
|
1029 |
-
Scooby Doo
|
1030 |
-
Scooby-Doo
|
1031 |
-
Scooby-Dum
|
1032 |
-
Scott Calvin
|
1033 |
-
Scrat
|
1034 |
-
Scrooge
|
1035 |
-
Scrooge McDuck
|
1036 |
-
Scuttle
|
1037 |
-
Sean Turner
|
1038 |
-
Sebastian
|
1039 |
-
Secret Squirrel
|
1040 |
-
Seiji Amasawa
|
1041 |
-
Senua
|
1042 |
-
Sephiroth
|
1043 |
-
Sesshomaru
|
1044 |
-
Shadow the Hedgehog
|
1045 |
-
Shaggy Rogers
|
1046 |
-
Shang
|
1047 |
-
Shang-Chi
|
1048 |
-
Sharon Carter
|
1049 |
-
Shaun
|
1050 |
-
Shazam
|
1051 |
-
Sheeta
|
1052 |
-
Shere Khan
|
1053 |
-
Sherman
|
1054 |
-
Shifu
|
1055 |
-
Shin-chan
|
1056 |
-
Shinji Ikari
|
1057 |
-
Shiny Pteranodon
|
1058 |
-
Shizuka Minamoto
|
1059 |
-
Shizuku Tsukishima
|
1060 |
-
Shovel Knight
|
1061 |
-
Shrek
|
1062 |
-
Shuri
|
1063 |
-
Sid
|
1064 |
-
Siegfried
|
1065 |
-
Silver Surfer
|
1066 |
-
Simba
|
1067 |
-
Sir Bedevere
|
1068 |
-
Sir Galahad the Pure
|
1069 |
-
Sir Lancelot the Brave
|
1070 |
-
Sir Robin
|
1071 |
-
Sir Topham Hatt
|
1072 |
-
Skarloey
|
1073 |
-
Skye
|
1074 |
-
Skywalker
|
1075 |
-
Sluggo
|
1076 |
-
Smiley Bone
|
1077 |
-
Smokey Bear
|
1078 |
-
Smurfette
|
1079 |
-
Snagglepuss
|
1080 |
-
Snap, Crackle, and Pop
|
1081 |
-
Sniffles
|
1082 |
-
Sniper
|
1083 |
-
Snoopy
|
1084 |
-
Snotlout
|
1085 |
-
Snow Miser
|
1086 |
-
Snow White
|
1087 |
-
Solaire of Astora
|
1088 |
-
Solid Snake
|
1089 |
-
Sonic the Hedgehog
|
1090 |
-
Sonic's Knuckles
|
1091 |
-
Sophie Hatter
|
1092 |
-
Spam Waitress
|
1093 |
-
Specter Knight
|
1094 |
-
Speedy Gonzales
|
1095 |
-
Spencer
|
1096 |
-
Spider-Man
|
1097 |
-
Sponge Bob
|
1098 |
-
SpongeBob
|
1099 |
-
SpongeBob Square Pants
|
1100 |
-
SpongeBob SquarePants
|
1101 |
-
SpongeBob's Grandma
|
1102 |
-
Spuds MacKenzie
|
1103 |
-
Spyro
|
1104 |
-
Squall Leonhart
|
1105 |
-
Squidward Tentacles
|
1106 |
-
Srongbad
|
1107 |
-
Star Lord
|
1108 |
-
Star-Lord
|
1109 |
-
Starfire
|
1110 |
-
Stella
|
1111 |
-
Steve
|
1112 |
-
Steven Universe
|
1113 |
-
Stewie Griffin
|
1114 |
-
Stimpy
|
1115 |
-
Stitch
|
1116 |
-
Stoick the Vast
|
1117 |
-
Stromboli
|
1118 |
-
Strong Bad
|
1119 |
-
Stuart Little
|
1120 |
-
Stuart the Minion
|
1121 |
-
Sulley
|
1122 |
-
Sumo
|
1123 |
-
Suneo Honekawa
|
1124 |
-
Super Why
|
1125 |
-
Supergirl
|
1126 |
-
Superman
|
1127 |
-
Surtur
|
1128 |
-
Susan Murphy
|
1129 |
-
Susan Murphy / Ginormica
|
1130 |
-
Susan Walker
|
1131 |
-
Susie Carmichael
|
1132 |
-
Sven
|
1133 |
-
Swiper
|
1134 |
-
Sylvester
|
1135 |
-
T-1000
|
1136 |
-
T-800
|
1137 |
-
T-800 (The Terminator)
|
1138 |
-
T-Bone
|
1139 |
-
Tai Lung
|
1140 |
-
Takeshi Goda (Gian)
|
1141 |
-
Talos
|
1142 |
-
Tamacti Jun
|
1143 |
-
Tank Girl
|
1144 |
-
Tarzan
|
1145 |
-
Tasmanian Devil
|
1146 |
-
Taz
|
1147 |
-
Team Rocket
|
1148 |
-
Ted Lasso
|
1149 |
-
Ted Wiggins
|
1150 |
-
Teddy Ruxpin
|
1151 |
-
Teemo
|
1152 |
-
Terminator
|
1153 |
-
Terry Bogard
|
1154 |
-
Thanatos
|
1155 |
-
Thanos
|
1156 |
-
The "It's" Man
|
1157 |
-
The Aflac Duck
|
1158 |
-
The Android Robot
|
1159 |
-
The Apple Logo Face
|
1160 |
-
The Avengers
|
1161 |
-
The Beast and Belle
|
1162 |
-
The Brain
|
1163 |
-
The Brawny Lumberjack
|
1164 |
-
The Bride
|
1165 |
-
The Burger King
|
1166 |
-
The Butcher
|
1167 |
-
The California Raisins
|
1168 |
-
The Camel (Joe Camel)
|
1169 |
-
The Caterpillar
|
1170 |
-
The Charmin Bears
|
1171 |
-
The Cheerios Bee
|
1172 |
-
The Cheetah
|
1173 |
-
The Cheshire Cat
|
1174 |
-
The Collector
|
1175 |
-
The Conductor
|
1176 |
-
The Death Star
|
1177 |
-
The Energizer Bunny
|
1178 |
-
The Ewoks
|
1179 |
-
The Flash
|
1180 |
-
The French Taunter
|
1181 |
-
The Froot Brute
|
1182 |
-
The Geico Gecko
|
1183 |
-
The Ghost of Christmas Past
|
1184 |
-
The Ghost of Christmas Present
|
1185 |
-
The Ghost of Christmas Yet to Come
|
1186 |
-
The Goldfish Cracker
|
1187 |
-
The Green Giant
|
1188 |
-
The Grinch
|
1189 |
-
The Gumbys
|
1190 |
-
The Hamburglar
|
1191 |
-
The Joker
|
1192 |
-
The Jolly Green Giant
|
1193 |
-
The Killer Rabbit of Caerbannog
|
1194 |
-
The Knight
|
1195 |
-
The Knights Who Say "Ni"
|
1196 |
-
The Kool-Aid Man
|
1197 |
-
The Laughing Cow
|
1198 |
-
The Lego Minifigure
|
1199 |
-
The Liberty Mutual Emu
|
1200 |
-
The Little Green Sprout
|
1201 |
-
The Little Prince
|
1202 |
-
The M&M's Characters
|
1203 |
-
The Mad Hatter
|
1204 |
-
The Mandarin
|
1205 |
-
The Michelin Man
|
1206 |
-
The Missing Link
|
1207 |
-
The Monarch
|
1208 |
-
The Monopoly Man
|
1209 |
-
The Morton Salt Girl
|
1210 |
-
The Nesquik Bunny
|
1211 |
-
The Noid
|
1212 |
-
The Once-ler
|
1213 |
-
The Planters Peanut
|
1214 |
-
The Planters Peanut (Mr. Peanut)
|
1215 |
-
The Red and Yellow M&M's
|
1216 |
-
The Scrubbing Bubbles
|
1217 |
-
The Starbucks Mermaid
|
1218 |
-
The Sun (Raisin Bran)
|
1219 |
-
The Taco Bell Chihuahua
|
1220 |
-
The Travelocity Gnome
|
1221 |
-
The Trix Rabbit
|
1222 |
-
The Vault Hunters
|
1223 |
-
The White Rabbit
|
1224 |
-
Theo
|
1225 |
-
Thomas
|
1226 |
-
Thomas O'Malley
|
1227 |
-
Thor
|
1228 |
-
Thorn Harvestar
|
1229 |
-
Thrall
|
1230 |
-
Thunk Crood
|
1231 |
-
Tiana
|
1232 |
-
Tidus
|
1233 |
-
Tifa Lockhart
|
1234 |
-
Tigger
|
1235 |
-
Tigress
|
1236 |
-
Tim
|
1237 |
-
Tim Lockwood
|
1238 |
-
Tim the Enchanter
|
1239 |
-
Timmy
|
1240 |
-
Timmy Brisby
|
1241 |
-
Timon
|
1242 |
-
Tinker Bell
|
1243 |
-
Tintin
|
1244 |
-
Tiny Diamond
|
1245 |
-
Tiny Pteranodon
|
1246 |
-
Tiny Tim
|
1247 |
-
Toad
|
1248 |
-
Toby
|
1249 |
-
Tom
|
1250 |
-
Tom And Jerry
|
1251 |
-
Tom Nook
|
1252 |
-
Tommy Pickles
|
1253 |
-
Tony
|
1254 |
-
Tony the Tiger
|
1255 |
-
Toothless
|
1256 |
-
Top Cat
|
1257 |
-
Totoro
|
1258 |
-
Toucan Sam
|
1259 |
-
Tracker
|
1260 |
-
Trevor Phillips
|
1261 |
-
Triss Merigold
|
1262 |
-
Trix Rabbit
|
1263 |
-
Tuffnut
|
1264 |
-
Tweety Bird
|
1265 |
-
Ultron
|
1266 |
-
Uncle Ben
|
1267 |
-
Ursula
|
1268 |
-
Usagi Tsukino (Sailor Moon)
|
1269 |
-
Usagi Yojimbo
|
1270 |
-
Usopp
|
1271 |
-
Valerie Brown
|
1272 |
-
Valiente
|
1273 |
-
Valkyrie
|
1274 |
-
Vanellope
|
1275 |
-
Vegeta
|
1276 |
-
Velma Dinkley
|
1277 |
-
Venom
|
1278 |
-
Verne
|
1279 |
-
Veronica Lodge
|
1280 |
-
Victor Frankenstein
|
1281 |
-
Victor Meldrew
|
1282 |
-
Violet
|
1283 |
-
Violet Parr
|
1284 |
-
Viper
|
1285 |
-
Vivo
|
1286 |
-
WALL-E
|
1287 |
-
Wallace
|
1288 |
-
Walter Hobbs
|
1289 |
-
Waluigi
|
1290 |
-
Wario
|
1291 |
-
Warren Cave
|
1292 |
-
Wendy
|
1293 |
-
Wheatley
|
1294 |
-
Widowmaker
|
1295 |
-
Wilbur
|
1296 |
-
Wildcat
|
1297 |
-
Wile E. Coyote
|
1298 |
-
Will Hunting
|
1299 |
-
Willie T. Stokes
|
1300 |
-
Wilma
|
1301 |
-
Wilma Flintstone
|
1302 |
-
Wilson
|
1303 |
-
Wimpy
|
1304 |
-
Winnie the Pooh
|
1305 |
-
Winry Rockbell
|
1306 |
-
Winter Soldier
|
1307 |
-
Witch Hazel
|
1308 |
-
Wolverine
|
1309 |
-
Wonder Red
|
1310 |
-
Wonder Woman
|
1311 |
-
Woody
|
1312 |
-
Woody Woodpecker
|
1313 |
-
Woofster
|
1314 |
-
WordGirl
|
1315 |
-
Wybie Lovat
|
1316 |
-
X-23
|
1317 |
-
X-Men
|
1318 |
-
Yasuo
|
1319 |
-
Yoda
|
1320 |
-
Yogi Bear
|
1321 |
-
Yon-Rogg
|
1322 |
-
Yondu
|
1323 |
-
Yosemite Sam
|
1324 |
-
Yoshi
|
1325 |
-
Yoshimitsu
|
1326 |
-
Yubaba
|
1327 |
-
Yukon Cornelius
|
1328 |
-
Yummy Mummy
|
1329 |
-
Yuna
|
1330 |
-
Zagreus
|
1331 |
-
Zatanna
|
1332 |
-
Zazu
|
1333 |
-
Zelda
|
1334 |
-
Zelda’s Sheik
|
1335 |
-
Zero
|
1336 |
-
Zim
|
1337 |
-
Zorak
|
1338 |
-
Zuma
|
1339 |
-
Zurg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/blocklist/nltk_data/corpora/wordnet.zip
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:cbda5ea6eef7f36a97a43d4a75f85e07fccbb4f23657d27b4ccbc93e2646ab59
|
3 |
-
size 10775600
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/blocklist/nltk_data/tokenizers/punkt_tab.zip
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c2b16c23d738effbdc5789d7aa601397c13ba2819bf922fb904687f3f16657ed
|
3 |
-
size 4259017
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/blocklist/nltk_data/tokenizers/punkt_tab/README
DELETED
@@ -1,98 +0,0 @@
|
|
1 |
-
Pretrained Punkt Models -- Jan Strunk (New version trained after issues 313 and 514 had been corrected)
|
2 |
-
|
3 |
-
Most models were prepared using the test corpora from Kiss and Strunk (2006). Additional models have
|
4 |
-
been contributed by various people using NLTK for sentence boundary detection.
|
5 |
-
|
6 |
-
For information about how to use these models, please confer the tokenization HOWTO:
|
7 |
-
http://nltk.googlecode.com/svn/trunk/doc/howto/tokenize.html
|
8 |
-
and chapter 3.8 of the NLTK book:
|
9 |
-
http://nltk.googlecode.com/svn/trunk/doc/book/ch03.html#sec-segmentation
|
10 |
-
|
11 |
-
There are pretrained tokenizers for the following languages:
|
12 |
-
|
13 |
-
File Language Source Contents Size of training corpus(in tokens) Model contributed by
|
14 |
-
=======================================================================================================================================================================
|
15 |
-
czech.pickle Czech Multilingual Corpus 1 (ECI) Lidove Noviny ~345,000 Jan Strunk / Tibor Kiss
|
16 |
-
Literarni Noviny
|
17 |
-
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
18 |
-
danish.pickle Danish Avisdata CD-Rom Ver. 1.1. 1995 Berlingske Tidende ~550,000 Jan Strunk / Tibor Kiss
|
19 |
-
(Berlingske Avisdata, Copenhagen) Weekend Avisen
|
20 |
-
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
21 |
-
dutch.pickle Dutch Multilingual Corpus 1 (ECI) De Limburger ~340,000 Jan Strunk / Tibor Kiss
|
22 |
-
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
23 |
-
english.pickle English Penn Treebank (LDC) Wall Street Journal ~469,000 Jan Strunk / Tibor Kiss
|
24 |
-
(American)
|
25 |
-
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
26 |
-
estonian.pickle Estonian University of Tartu, Estonia Eesti Ekspress ~359,000 Jan Strunk / Tibor Kiss
|
27 |
-
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
28 |
-
finnish.pickle Finnish Finnish Parole Corpus, Finnish Books and major national ~364,000 Jan Strunk / Tibor Kiss
|
29 |
-
Text Bank (Suomen Kielen newspapers
|
30 |
-
Tekstipankki)
|
31 |
-
Finnish Center for IT Science
|
32 |
-
(CSC)
|
33 |
-
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
34 |
-
french.pickle French Multilingual Corpus 1 (ECI) Le Monde ~370,000 Jan Strunk / Tibor Kiss
|
35 |
-
(European)
|
36 |
-
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
37 |
-
german.pickle German Neue Zürcher Zeitung AG Neue Zürcher Zeitung ~847,000 Jan Strunk / Tibor Kiss
|
38 |
-
(Switzerland) CD-ROM
|
39 |
-
(Uses "ss"
|
40 |
-
instead of "ß")
|
41 |
-
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
42 |
-
greek.pickle Greek Efstathios Stamatatos To Vima (TO BHMA) ~227,000 Jan Strunk / Tibor Kiss
|
43 |
-
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
44 |
-
italian.pickle Italian Multilingual Corpus 1 (ECI) La Stampa, Il Mattino ~312,000 Jan Strunk / Tibor Kiss
|
45 |
-
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
46 |
-
norwegian.pickle Norwegian Centre for Humanities Bergens Tidende ~479,000 Jan Strunk / Tibor Kiss
|
47 |
-
(Bokmål and Information Technologies,
|
48 |
-
Nynorsk) Bergen
|
49 |
-
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
50 |
-
polish.pickle Polish Polish National Corpus Literature, newspapers, etc. ~1,000,000 Krzysztof Langner
|
51 |
-
(http://www.nkjp.pl/)
|
52 |
-
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
53 |
-
portuguese.pickle Portuguese CETENFolha Corpus Folha de São Paulo ~321,000 Jan Strunk / Tibor Kiss
|
54 |
-
(Brazilian) (Linguateca)
|
55 |
-
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
56 |
-
slovene.pickle Slovene TRACTOR Delo ~354,000 Jan Strunk / Tibor Kiss
|
57 |
-
Slovene Academy for Arts
|
58 |
-
and Sciences
|
59 |
-
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
60 |
-
spanish.pickle Spanish Multilingual Corpus 1 (ECI) Sur ~353,000 Jan Strunk / Tibor Kiss
|
61 |
-
(European)
|
62 |
-
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
63 |
-
swedish.pickle Swedish Multilingual Corpus 1 (ECI) Dagens Nyheter ~339,000 Jan Strunk / Tibor Kiss
|
64 |
-
(and some other texts)
|
65 |
-
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
66 |
-
turkish.pickle Turkish METU Turkish Corpus Milliyet ~333,000 Jan Strunk / Tibor Kiss
|
67 |
-
(Türkçe Derlem Projesi)
|
68 |
-
University of Ankara
|
69 |
-
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
70 |
-
|
71 |
-
The corpora contained about 400,000 tokens on average and mostly consisted of newspaper text converted to
|
72 |
-
Unicode using the codecs module.
|
73 |
-
|
74 |
-
Kiss, Tibor and Strunk, Jan (2006): Unsupervised Multilingual Sentence Boundary Detection.
|
75 |
-
Computational Linguistics 32: 485-525.
|
76 |
-
|
77 |
-
---- Training Code ----
|
78 |
-
|
79 |
-
# import punkt
|
80 |
-
import nltk.tokenize.punkt
|
81 |
-
|
82 |
-
# Make a new Tokenizer
|
83 |
-
tokenizer = nltk.tokenize.punkt.PunktSentenceTokenizer()
|
84 |
-
|
85 |
-
# Read in training corpus (one example: Slovene)
|
86 |
-
import codecs
|
87 |
-
text = codecs.open("slovene.plain","Ur","iso-8859-2").read()
|
88 |
-
|
89 |
-
# Train tokenizer
|
90 |
-
tokenizer.train(text)
|
91 |
-
|
92 |
-
# Dump pickled tokenizer
|
93 |
-
import pickle
|
94 |
-
out = open("slovene.pickle","wb")
|
95 |
-
pickle.dump(tokenizer, out)
|
96 |
-
out.close()
|
97 |
-
|
98 |
-
---------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/blocklist/nltk_data/tokenizers/punkt_tab/czech/abbrev_types.txt
DELETED
@@ -1,118 +0,0 @@
|
|
1 |
-
t
|
2 |
-
množ
|
3 |
-
např
|
4 |
-
j.h
|
5 |
-
man
|
6 |
-
ú
|
7 |
-
jug
|
8 |
-
dr
|
9 |
-
bl
|
10 |
-
ml
|
11 |
-
okr
|
12 |
-
st
|
13 |
-
uh
|
14 |
-
šp
|
15 |
-
judr
|
16 |
-
u.s.a
|
17 |
-
p
|
18 |
-
arg
|
19 |
-
žitě
|
20 |
-
st.celsia
|
21 |
-
etc
|
22 |
-
p.s
|
23 |
-
t.r
|
24 |
-
lok
|
25 |
-
mil
|
26 |
-
ict
|
27 |
-
n
|
28 |
-
tl
|
29 |
-
min
|
30 |
-
č
|
31 |
-
d
|
32 |
-
al
|
33 |
-
ravenně
|
34 |
-
mj
|
35 |
-
nar
|
36 |
-
plk
|
37 |
-
s.p
|
38 |
-
a.g
|
39 |
-
roč
|
40 |
-
b
|
41 |
-
zdi
|
42 |
-
r.s.c
|
43 |
-
přek
|
44 |
-
m
|
45 |
-
gen
|
46 |
-
csc
|
47 |
-
mudr
|
48 |
-
vic
|
49 |
-
š
|
50 |
-
sb
|
51 |
-
resp
|
52 |
-
tzn
|
53 |
-
iv
|
54 |
-
s.r.o
|
55 |
-
mar
|
56 |
-
w
|
57 |
-
čs
|
58 |
-
vi
|
59 |
-
tzv
|
60 |
-
ul
|
61 |
-
pen
|
62 |
-
zv
|
63 |
-
str
|
64 |
-
čp
|
65 |
-
org
|
66 |
-
rak
|
67 |
-
sv
|
68 |
-
pplk
|
69 |
-
u.s
|
70 |
-
prof
|
71 |
-
c.k
|
72 |
-
op
|
73 |
-
g
|
74 |
-
vii
|
75 |
-
kr
|
76 |
-
ing
|
77 |
-
j.o
|
78 |
-
drsc
|
79 |
-
m3
|
80 |
-
l
|
81 |
-
tr
|
82 |
-
ceo
|
83 |
-
ch
|
84 |
-
fuk
|
85 |
-
vl
|
86 |
-
viii
|
87 |
-
líp
|
88 |
-
hl.m
|
89 |
-
t.zv
|
90 |
-
phdr
|
91 |
-
o.k
|
92 |
-
tis
|
93 |
-
doc
|
94 |
-
kl
|
95 |
-
ard
|
96 |
-
čkd
|
97 |
-
pok
|
98 |
-
apod
|
99 |
-
r
|
100 |
-
př
|
101 |
-
a.s
|
102 |
-
j
|
103 |
-
jr
|
104 |
-
i.m
|
105 |
-
e
|
106 |
-
kupř
|
107 |
-
f
|
108 |
-
tř
|
109 |
-
xvi
|
110 |
-
mir
|
111 |
-
atď
|
112 |
-
vr
|
113 |
-
r.i.v
|
114 |
-
hl
|
115 |
-
kv
|
116 |
-
t.j
|
117 |
-
y
|
118 |
-
q.p.r
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/blocklist/nltk_data/tokenizers/punkt_tab/czech/collocations.tab
DELETED
@@ -1,96 +0,0 @@
|
|
1 |
-
i dejmala
|
2 |
-
##number## prosince
|
3 |
-
h steina
|
4 |
-
##number## listopadu
|
5 |
-
a dvořák
|
6 |
-
v klaus
|
7 |
-
i čnhl
|
8 |
-
##number## wladyslawowo
|
9 |
-
##number## letech
|
10 |
-
a jiráska
|
11 |
-
a dubček
|
12 |
-
##number## štrasburk
|
13 |
-
##number## juniorské
|
14 |
-
##number## století
|
15 |
-
##number## kola
|
16 |
-
##number## pád
|
17 |
-
##number## května
|
18 |
-
##number## týdne
|
19 |
-
v dlouhý
|
20 |
-
k design
|
21 |
-
##number## červenec
|
22 |
-
i ligy
|
23 |
-
##number## kolo
|
24 |
-
z svěrák
|
25 |
-
##number## mája
|
26 |
-
##number## šimková
|
27 |
-
a bělého
|
28 |
-
a bradáč
|
29 |
-
##number## ročníku
|
30 |
-
##number## dubna
|
31 |
-
a vivaldiho
|
32 |
-
v mečiara
|
33 |
-
c carrićre
|
34 |
-
##number## sjezd
|
35 |
-
##number## výroční
|
36 |
-
##number## kole
|
37 |
-
##number## narozenin
|
38 |
-
k maleevová
|
39 |
-
i čnfl
|
40 |
-
##number## pádě
|
41 |
-
##number## září
|
42 |
-
##number## výročí
|
43 |
-
a dvořáka
|
44 |
-
h g.
|
45 |
-
##number## ledna
|
46 |
-
a dvorský
|
47 |
-
h měsíc
|
48 |
-
##number## srpna
|
49 |
-
##number## tř.
|
50 |
-
a mozarta
|
51 |
-
##number## sudetoněmeckých
|
52 |
-
o sokolov
|
53 |
-
k škrach
|
54 |
-
v benda
|
55 |
-
##number## symfonie
|
56 |
-
##number## července
|
57 |
-
x šalda
|
58 |
-
c abrahama
|
59 |
-
a tichý
|
60 |
-
##number## místo
|
61 |
-
k bielecki
|
62 |
-
v havel
|
63 |
-
##number## etapu
|
64 |
-
a dubčeka
|
65 |
-
i liga
|
66 |
-
##number## světový
|
67 |
-
v klausem
|
68 |
-
##number## ženy
|
69 |
-
##number## létech
|
70 |
-
##number## minutě
|
71 |
-
##number## listopadem
|
72 |
-
##number## místě
|
73 |
-
o vlček
|
74 |
-
k peteraje
|
75 |
-
i sponzor
|
76 |
-
##number## června
|
77 |
-
##number## min.
|
78 |
-
##number## oprávněnou
|
79 |
-
##number## květnu
|
80 |
-
##number## aktu
|
81 |
-
##number## květnem
|
82 |
-
##number## října
|
83 |
-
i rynda
|
84 |
-
##number## února
|
85 |
-
i snfl
|
86 |
-
a mozart
|
87 |
-
z košler
|
88 |
-
a dvorskému
|
89 |
-
v marhoul
|
90 |
-
v mečiar
|
91 |
-
##number## ročník
|
92 |
-
##number## máje
|
93 |
-
v havla
|
94 |
-
k gott
|
95 |
-
s bacha
|
96 |
-
##number## ad
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/blocklist/nltk_data/tokenizers/punkt_tab/czech/ortho_context.tab
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Cosmos-1.0-Guardrail/blocklist/nltk_data/tokenizers/punkt_tab/czech/sent_starters.txt
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
já
|
2 |
-
milena
|
3 |
-
tomáš
|
4 |
-
oznámila
|
5 |
-
podle
|
6 |
-
my
|
7 |
-
vyplývá
|
8 |
-
hlavní
|
9 |
-
jelikož
|
10 |
-
musíme
|
11 |
-
kdyby
|
12 |
-
foto
|
13 |
-
rozptylové
|
14 |
-
snad
|
15 |
-
zároveň
|
16 |
-
jaroslav
|
17 |
-
po
|
18 |
-
v
|
19 |
-
kromě
|
20 |
-
pokud
|
21 |
-
toto
|
22 |
-
jenže
|
23 |
-
oba
|
24 |
-
jak
|
25 |
-
zatímco
|
26 |
-
ten
|
27 |
-
myslím
|
28 |
-
navíc
|
29 |
-
dušan
|
30 |
-
zdá
|
31 |
-
dnes
|
32 |
-
přesto
|
33 |
-
tato
|
34 |
-
ti
|
35 |
-
bratislava
|
36 |
-
ale
|
37 |
-
když
|
38 |
-
nicméně
|
39 |
-
tento
|
40 |
-
mirka
|
41 |
-
přitom
|
42 |
-
dokud
|
43 |
-
jan
|
44 |
-
bohužel
|
45 |
-
ta
|
46 |
-
díky
|
47 |
-
prohlásil
|
48 |
-
praha
|
49 |
-
jestliže
|
50 |
-
jde
|
51 |
-
vždyť
|
52 |
-
moskva
|
53 |
-
proto
|
54 |
-
to
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/blocklist/nltk_data/tokenizers/punkt_tab/danish/abbrev_types.txt
DELETED
@@ -1,211 +0,0 @@
|
|
1 |
-
t
|
2 |
-
tlf
|
3 |
-
b.p
|
4 |
-
evt
|
5 |
-
j.h
|
6 |
-
lenz
|
7 |
-
mht
|
8 |
-
gl
|
9 |
-
bl
|
10 |
-
stud.polit
|
11 |
-
e.j
|
12 |
-
st
|
13 |
-
o
|
14 |
-
dec
|
15 |
-
mag
|
16 |
-
h.b
|
17 |
-
p
|
18 |
-
adm
|
19 |
-
el.lign
|
20 |
-
e.s
|
21 |
-
saalba
|
22 |
-
styrt
|
23 |
-
nr
|
24 |
-
m.a.s.h
|
25 |
-
etc
|
26 |
-
pharm
|
27 |
-
hg
|
28 |
-
j.j
|
29 |
-
dj
|
30 |
-
mountainb
|
31 |
-
f.kr
|
32 |
-
h.r
|
33 |
-
cand.jur
|
34 |
-
sp
|
35 |
-
osv
|
36 |
-
s.g
|
37 |
-
ndr
|
38 |
-
inc
|
39 |
-
b.i.g
|
40 |
-
dk-sver
|
41 |
-
sl
|
42 |
-
v.s.o.d
|
43 |
-
cand.mag
|
44 |
-
d.v.s
|
45 |
-
v.i
|
46 |
-
bøddel
|
47 |
-
fr
|
48 |
-
ø«
|
49 |
-
dr.phil
|
50 |
-
chr
|
51 |
-
p.d
|
52 |
-
bj
|
53 |
-
fhv
|
54 |
-
tilskudsforhold
|
55 |
-
m.a
|
56 |
-
sek
|
57 |
-
p.g.a
|
58 |
-
int
|
59 |
-
pokalf
|
60 |
-
ik
|
61 |
-
dir
|
62 |
-
em-lodtrækn
|
63 |
-
a.h
|
64 |
-
o.lign
|
65 |
-
p.t
|
66 |
-
m.v
|
67 |
-
n.j
|
68 |
-
m.h.t
|
69 |
-
m.m
|
70 |
-
a.p
|
71 |
-
pers
|
72 |
-
4-bakketurn
|
73 |
-
dr.med
|
74 |
-
w.ø
|
75 |
-
polit
|
76 |
-
fremsættes
|
77 |
-
techn
|
78 |
-
tidl
|
79 |
-
o.g
|
80 |
-
i.c.i
|
81 |
-
mill
|
82 |
-
skt
|
83 |
-
m.fl
|
84 |
-
cand.merc
|
85 |
-
kbh
|
86 |
-
indiv
|
87 |
-
stk
|
88 |
-
dk-maked
|
89 |
-
memorandum
|
90 |
-
mestersk
|
91 |
-
mag.art
|
92 |
-
kitzb
|
93 |
-
h
|
94 |
-
lic
|
95 |
-
fig
|
96 |
-
dressurst
|
97 |
-
sportsg
|
98 |
-
r.e.m
|
99 |
-
d.u.m
|
100 |
-
sct
|
101 |
-
kld
|
102 |
-
bl.a
|
103 |
-
hf
|
104 |
-
g.a
|
105 |
-
corp
|
106 |
-
w
|
107 |
-
konk
|
108 |
-
zoeterm
|
109 |
-
b.t
|
110 |
-
a.d
|
111 |
-
l.b
|
112 |
-
jf
|
113 |
-
s.b
|
114 |
-
kgl
|
115 |
-
ill
|
116 |
-
beck
|
117 |
-
tosset
|
118 |
-
afd
|
119 |
-
johs
|
120 |
-
pct
|
121 |
-
k.b
|
122 |
-
sv
|
123 |
-
verbalt
|
124 |
-
kgs
|
125 |
-
l.m.k
|
126 |
-
j.l
|
127 |
-
aus
|
128 |
-
superl
|
129 |
-
t.v
|
130 |
-
mia
|
131 |
-
kr
|
132 |
-
pr
|
133 |
-
præmien
|
134 |
-
j.b.s
|
135 |
-
j.o
|
136 |
-
o.s.v
|
137 |
-
edb-oplysninger
|
138 |
-
o.m.a
|
139 |
-
ca
|
140 |
-
1b
|
141 |
-
f.eks
|
142 |
-
rens
|
143 |
-
ch
|
144 |
-
mr
|
145 |
-
schw
|
146 |
-
d.c
|
147 |
-
utraditionelt
|
148 |
-
idrætsgym
|
149 |
-
hhv
|
150 |
-
e.l
|
151 |
-
s.s
|
152 |
-
eks
|
153 |
-
f.o.m
|
154 |
-
dk-storbrit
|
155 |
-
dk-jugo
|
156 |
-
n.z
|
157 |
-
derivater
|
158 |
-
c
|
159 |
-
pt
|
160 |
-
vm-kval
|
161 |
-
kl
|
162 |
-
hr
|
163 |
-
cand
|
164 |
-
jur
|
165 |
-
sav
|
166 |
-
h.c
|
167 |
-
arab.-danm
|
168 |
-
d.a.d
|
169 |
-
fl
|
170 |
-
o.a
|
171 |
-
a.s
|
172 |
-
cand.polit
|
173 |
-
grundejerform
|
174 |
-
j
|
175 |
-
faglærte
|
176 |
-
cr
|
177 |
-
a.a
|
178 |
-
mou
|
179 |
-
f.r.i
|
180 |
-
årh
|
181 |
-
o.m.m
|
182 |
-
sve
|
183 |
-
c.a
|
184 |
-
engl
|
185 |
-
sikkerhedssystemerne
|
186 |
-
m.f
|
187 |
-
j.k
|
188 |
-
phil
|
189 |
-
f
|
190 |
-
vet
|
191 |
-
mio
|
192 |
-
k.e
|
193 |
-
m.k
|
194 |
-
atla
|
195 |
-
idrætsg
|
196 |
-
n.n
|
197 |
-
4-bakketur
|
198 |
-
dvs
|
199 |
-
sdr
|
200 |
-
s.j
|
201 |
-
hol
|
202 |
-
s.h
|
203 |
-
pei
|
204 |
-
kbhvn
|
205 |
-
aa
|
206 |
-
m.g.i
|
207 |
-
fvt
|
208 |
-
i«
|
209 |
-
b.c
|
210 |
-
th
|
211 |
-
lrs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/blocklist/nltk_data/tokenizers/punkt_tab/danish/collocations.tab
DELETED
@@ -1,101 +0,0 @@
|
|
1 |
-
##number## skak
|
2 |
-
##number## speedway
|
3 |
-
##number## rally
|
4 |
-
##number## april
|
5 |
-
##number## dm-fin
|
6 |
-
##number## viceformand
|
7 |
-
m jensen
|
8 |
-
##number## kano/kajak
|
9 |
-
##number## bowling
|
10 |
-
##number## dm-finale
|
11 |
-
##number## årh.
|
12 |
-
##number## januar
|
13 |
-
##number## august
|
14 |
-
##number## marathon
|
15 |
-
##number## kamp
|
16 |
-
##number## skihop
|
17 |
-
##number## etage
|
18 |
-
##number## tennis
|
19 |
-
##number## cykling
|
20 |
-
e andersen
|
21 |
-
##number## december
|
22 |
-
g h.
|
23 |
-
##number## neb
|
24 |
-
##number## sektion
|
25 |
-
##number## afd.
|
26 |
-
##number## klasse
|
27 |
-
##number## trampolin
|
28 |
-
##number## bordtennis
|
29 |
-
##number## formel
|
30 |
-
##number## århundredes
|
31 |
-
##number## dm-semifin
|
32 |
-
##number## heks
|
33 |
-
##number## taekwondo
|
34 |
-
##number## galop
|
35 |
-
##number## basketball
|
36 |
-
##number## dm
|
37 |
-
m skræl
|
38 |
-
##number## trav
|
39 |
-
##number## provins
|
40 |
-
##number## triathlon
|
41 |
-
k axel
|
42 |
-
##number## rugby
|
43 |
-
s h.
|
44 |
-
##number## klaverkoncert
|
45 |
-
a p.
|
46 |
-
e løgstrup
|
47 |
-
k telefax
|
48 |
-
##number## gyldendal
|
49 |
-
##number## fodbold
|
50 |
-
e rosenfeldt
|
51 |
-
##number## oktober
|
52 |
-
k o.
|
53 |
-
##number## september
|
54 |
-
##number## dec.
|
55 |
-
##number## juledag
|
56 |
-
##number## badminton
|
57 |
-
##number## sejlsport
|
58 |
-
##number## håndbold
|
59 |
-
r førsund
|
60 |
-
e jørgensen
|
61 |
-
d ##number##
|
62 |
-
k e
|
63 |
-
##number## alp.ski
|
64 |
-
##number## judo
|
65 |
-
##number## roning
|
66 |
-
##number## november
|
67 |
-
##number## atletik
|
68 |
-
##number## århundrede
|
69 |
-
##number## ridning
|
70 |
-
##number## marts
|
71 |
-
m andersen
|
72 |
-
d roosevelt
|
73 |
-
##number## brydning
|
74 |
-
s kr.
|
75 |
-
##number## runde
|
76 |
-
##number## division
|
77 |
-
##number## sal
|
78 |
-
##number## boksning
|
79 |
-
##number## minut
|
80 |
-
##number## golf
|
81 |
-
##number## juni
|
82 |
-
##number## symfoni
|
83 |
-
##number## hurtigløb
|
84 |
-
k jørgensen
|
85 |
-
##number## jörgen
|
86 |
-
##number## klasses
|
87 |
-
e jacobsen
|
88 |
-
k jensen
|
89 |
-
##number## februar
|
90 |
-
k nielsen
|
91 |
-
##number## volleyball
|
92 |
-
##number## maj
|
93 |
-
##number## verdenskrig
|
94 |
-
##number## juli
|
95 |
-
##number## ishockey
|
96 |
-
##number## kunstskøjteløb
|
97 |
-
b jørgensen
|
98 |
-
##number## gymnastik
|
99 |
-
##number## svømning
|
100 |
-
##number## tw
|
101 |
-
i pedersens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cosmos-1.0-Guardrail/blocklist/nltk_data/tokenizers/punkt_tab/danish/ortho_context.tab
DELETED
The diff for this file is too large to render.
See raw diff
|
|