Add or update README.md
Browse files
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language: ja
|
4 |
+
library_name: transformers
|
5 |
+
tags:
|
6 |
+
- continued-pretraining
|
7 |
+
- language-model
|
8 |
+
model-index:
|
9 |
+
- name: aokitools/japanese-laws-egov-instruct-202508051206
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
# Experimental model in research stage
|
14 |
+
|
15 |
+
|
16 |
+
## Quickstart
|
17 |
+
|
18 |
+
If you're using [Ollama](https://ollama.com/), run the following command first, then restart the Ollama app and select the newly added model.
|
19 |
+
```shell
|
20 |
+
ollama pull hf.co/aokitools/japanese-laws-egov-instruct-202508051206
|
21 |
+
```
|
22 |
+
|
23 |
+
If you want to remove it, run the following command:
|
24 |
+
```shell
|
25 |
+
ollama list
|
26 |
+
ollama rm hf.co/aokitools/japanese-laws-egov-instruct-202508051206:latest
|
27 |
+
ollama list
|
28 |
+
```
|
29 |
+
|
30 |
+
|
31 |
+
To use it from Python, use the following code.
|
32 |
+
```python
|
33 |
+
import torch
|
34 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
35 |
+
|
36 |
+
model_name = "aokitools/japanese-laws-egov-instruct-202508051206"
|
37 |
+
|
38 |
+
quant_config = BitsAndBytesConfig(
|
39 |
+
load_in_8bit=True,
|
40 |
+
llm_int8_threshold=6.0,
|
41 |
+
)
|
42 |
+
|
43 |
+
# load the tokenizer and the model
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
45 |
+
model = AutoModelForCausalLM.from_pretrained(
|
46 |
+
model_name,
|
47 |
+
torch_dtype=torch.float16,
|
48 |
+
device_map="auto",
|
49 |
+
quantization_config=quant_config,
|
50 |
+
)
|
51 |
+
|
52 |
+
# prepare the model input
|
53 |
+
prompt = "Give me a short introduction to large language model."
|
54 |
+
messages = [
|
55 |
+
{"role": "user", "content": prompt}
|
56 |
+
]
|
57 |
+
text = tokenizer.apply_chat_template(
|
58 |
+
messages,
|
59 |
+
tokenize=False,
|
60 |
+
add_generation_prompt=True,
|
61 |
+
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
|
62 |
+
)
|
63 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
64 |
+
|
65 |
+
# conduct text completion
|
66 |
+
generated_ids = model.generate(
|
67 |
+
**model_inputs,
|
68 |
+
max_new_tokens=256
|
69 |
+
)
|
70 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
71 |
+
|
72 |
+
# parsing thinking content
|
73 |
+
try:
|
74 |
+
# rindex finding 151668 (</think>)
|
75 |
+
index = len(output_ids) - output_ids[::-1].index(151668)
|
76 |
+
except ValueError:
|
77 |
+
index = 0
|
78 |
+
|
79 |
+
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
|
80 |
+
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
|
81 |
+
|
82 |
+
print("thinking content:", thinking_content)
|
83 |
+
print("content:", content)
|
84 |
+
```
|
85 |
+
|
86 |
+
|
87 |
+
This model is a continual pretraining of [Qwen/Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B).
|
88 |
+
|
89 |
+
## Training details
|
90 |
+
- Base model: Qwen3-1.7B
|
91 |
+
- Tokenizer: QwenTokenizer
|
92 |
+
|
93 |
+
## License
|
94 |
+
- Apache 2.0 + Alibaba Qianwen License
|
95 |
+
|