Model save
Browse files- README.md +88 -0
- classification_report_test.txt +14 -0
- confusion_matrix_test.csv +4 -0
- model_predict.csv +0 -0
README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: FacebookAI/roberta-large-mnli
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: roberta-large-mnli_nli
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# roberta-large-mnli_nli
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [FacebookAI/roberta-large-mnli](https://huggingface.co/FacebookAI/roberta-large-mnli) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 2.9476
|
22 |
+
- Accuracy: 0.6009
|
23 |
+
- Precision Macro: 0.6028
|
24 |
+
- Recall Macro: 0.6009
|
25 |
+
- F1 Macro: 0.6014
|
26 |
+
- F1 Weighted: 0.6012
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-05
|
46 |
+
- train_batch_size: 64
|
47 |
+
- eval_batch_size: 64
|
48 |
+
- seed: 42
|
49 |
+
- gradient_accumulation_steps: 2
|
50 |
+
- total_train_batch_size: 128
|
51 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
52 |
+
- lr_scheduler_type: cosine
|
53 |
+
- lr_scheduler_warmup_ratio: 0.1
|
54 |
+
- num_epochs: 20
|
55 |
+
- mixed_precision_training: Native AMP
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | F1 Weighted |
|
60 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:-----------:|
|
61 |
+
| 1.0485 | 1.0 | 143 | 0.9848 | 0.5162 | 0.5491 | 0.5191 | 0.4775 | 0.4758 |
|
62 |
+
| 0.9114 | 2.0 | 286 | 0.9839 | 0.5264 | 0.5642 | 0.5266 | 0.5150 | 0.5148 |
|
63 |
+
| 0.8746 | 3.0 | 429 | 0.9618 | 0.5517 | 0.5743 | 0.5522 | 0.5453 | 0.5451 |
|
64 |
+
| 0.7909 | 4.0 | 572 | 0.9498 | 0.5805 | 0.5859 | 0.5813 | 0.5766 | 0.5762 |
|
65 |
+
| 0.7105 | 5.0 | 715 | 0.9324 | 0.5956 | 0.6000 | 0.5960 | 0.5939 | 0.5936 |
|
66 |
+
| 0.6205 | 6.0 | 858 | 0.9797 | 0.5933 | 0.5958 | 0.5934 | 0.5927 | 0.5925 |
|
67 |
+
| 0.5113 | 7.0 | 1001 | 1.1925 | 0.5889 | 0.5918 | 0.5896 | 0.5857 | 0.5853 |
|
68 |
+
| 0.4181 | 8.0 | 1144 | 1.2665 | 0.5916 | 0.5922 | 0.5918 | 0.5918 | 0.5916 |
|
69 |
+
| 0.3218 | 9.0 | 1287 | 1.4587 | 0.5849 | 0.5866 | 0.5848 | 0.5849 | 0.5849 |
|
70 |
+
| 0.2543 | 10.0 | 1430 | 1.5554 | 0.5902 | 0.5910 | 0.5908 | 0.5892 | 0.5889 |
|
71 |
+
| 0.1851 | 11.0 | 1573 | 1.8125 | 0.5787 | 0.5829 | 0.5782 | 0.5786 | 0.5787 |
|
72 |
+
| 0.1316 | 12.0 | 1716 | 2.0182 | 0.5827 | 0.5837 | 0.5826 | 0.5826 | 0.5825 |
|
73 |
+
| 0.0884 | 13.0 | 1859 | 2.1233 | 0.5809 | 0.5823 | 0.5810 | 0.5812 | 0.5811 |
|
74 |
+
| 0.0708 | 14.0 | 2002 | 2.2924 | 0.5938 | 0.5936 | 0.5943 | 0.5935 | 0.5931 |
|
75 |
+
| 0.0527 | 15.0 | 2145 | 2.4595 | 0.5916 | 0.5923 | 0.5919 | 0.5918 | 0.5916 |
|
76 |
+
| 0.0334 | 16.0 | 2288 | 2.6315 | 0.5991 | 0.6009 | 0.5991 | 0.5996 | 0.5995 |
|
77 |
+
| 0.0186 | 17.0 | 2431 | 2.8367 | 0.5947 | 0.5979 | 0.5946 | 0.5953 | 0.5952 |
|
78 |
+
| 0.0179 | 18.0 | 2574 | 2.9197 | 0.6004 | 0.6032 | 0.6004 | 0.6010 | 0.6009 |
|
79 |
+
| 0.0113 | 19.0 | 2717 | 2.9423 | 0.5982 | 0.6003 | 0.5982 | 0.5987 | 0.5986 |
|
80 |
+
| 0.0134 | 20.0 | 2860 | 2.9476 | 0.6009 | 0.6028 | 0.6009 | 0.6014 | 0.6012 |
|
81 |
+
|
82 |
+
|
83 |
+
### Framework versions
|
84 |
+
|
85 |
+
- Transformers 4.55.0
|
86 |
+
- Pytorch 2.7.0+cu126
|
87 |
+
- Datasets 4.0.0
|
88 |
+
- Tokenizers 0.21.4
|
classification_report_test.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
precision recall f1-score support
|
2 |
+
|
3 |
+
entailment 0.61 0.61 0.61 750
|
4 |
+
contradiction 0.54 0.57 0.55 737
|
5 |
+
neutral 0.64 0.62 0.63 777
|
6 |
+
|
7 |
+
accuracy 0.60 2264
|
8 |
+
macro avg 0.60 0.60 0.60 2264
|
9 |
+
weighted avg 0.60 0.60 0.60 2264
|
10 |
+
|
11 |
+
Confusion matrix:
|
12 |
+
[[454 180 116]
|
13 |
+
[162 417 158]
|
14 |
+
[124 172 481]]
|
confusion_matrix_test.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,entailment,contradiction,neutral
|
2 |
+
entailment,454,180,116
|
3 |
+
contradiction,162,417,158
|
4 |
+
neutral,124,172,481
|
model_predict.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|