aiface commited on
Commit
4e259ea
·
verified ·
1 Parent(s): a366f1a

Model save

Browse files
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: FacebookAI/roberta-large-mnli
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: roberta-large-mnli_nli
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # roberta-large-mnli_nli
18
+
19
+ This model is a fine-tuned version of [FacebookAI/roberta-large-mnli](https://huggingface.co/FacebookAI/roberta-large-mnli) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 2.9476
22
+ - Accuracy: 0.6009
23
+ - Precision Macro: 0.6028
24
+ - Recall Macro: 0.6009
25
+ - F1 Macro: 0.6014
26
+ - F1 Weighted: 0.6012
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 64
47
+ - eval_batch_size: 64
48
+ - seed: 42
49
+ - gradient_accumulation_steps: 2
50
+ - total_train_batch_size: 128
51
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: cosine
53
+ - lr_scheduler_warmup_ratio: 0.1
54
+ - num_epochs: 20
55
+ - mixed_precision_training: Native AMP
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | F1 Weighted |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:-----------:|
61
+ | 1.0485 | 1.0 | 143 | 0.9848 | 0.5162 | 0.5491 | 0.5191 | 0.4775 | 0.4758 |
62
+ | 0.9114 | 2.0 | 286 | 0.9839 | 0.5264 | 0.5642 | 0.5266 | 0.5150 | 0.5148 |
63
+ | 0.8746 | 3.0 | 429 | 0.9618 | 0.5517 | 0.5743 | 0.5522 | 0.5453 | 0.5451 |
64
+ | 0.7909 | 4.0 | 572 | 0.9498 | 0.5805 | 0.5859 | 0.5813 | 0.5766 | 0.5762 |
65
+ | 0.7105 | 5.0 | 715 | 0.9324 | 0.5956 | 0.6000 | 0.5960 | 0.5939 | 0.5936 |
66
+ | 0.6205 | 6.0 | 858 | 0.9797 | 0.5933 | 0.5958 | 0.5934 | 0.5927 | 0.5925 |
67
+ | 0.5113 | 7.0 | 1001 | 1.1925 | 0.5889 | 0.5918 | 0.5896 | 0.5857 | 0.5853 |
68
+ | 0.4181 | 8.0 | 1144 | 1.2665 | 0.5916 | 0.5922 | 0.5918 | 0.5918 | 0.5916 |
69
+ | 0.3218 | 9.0 | 1287 | 1.4587 | 0.5849 | 0.5866 | 0.5848 | 0.5849 | 0.5849 |
70
+ | 0.2543 | 10.0 | 1430 | 1.5554 | 0.5902 | 0.5910 | 0.5908 | 0.5892 | 0.5889 |
71
+ | 0.1851 | 11.0 | 1573 | 1.8125 | 0.5787 | 0.5829 | 0.5782 | 0.5786 | 0.5787 |
72
+ | 0.1316 | 12.0 | 1716 | 2.0182 | 0.5827 | 0.5837 | 0.5826 | 0.5826 | 0.5825 |
73
+ | 0.0884 | 13.0 | 1859 | 2.1233 | 0.5809 | 0.5823 | 0.5810 | 0.5812 | 0.5811 |
74
+ | 0.0708 | 14.0 | 2002 | 2.2924 | 0.5938 | 0.5936 | 0.5943 | 0.5935 | 0.5931 |
75
+ | 0.0527 | 15.0 | 2145 | 2.4595 | 0.5916 | 0.5923 | 0.5919 | 0.5918 | 0.5916 |
76
+ | 0.0334 | 16.0 | 2288 | 2.6315 | 0.5991 | 0.6009 | 0.5991 | 0.5996 | 0.5995 |
77
+ | 0.0186 | 17.0 | 2431 | 2.8367 | 0.5947 | 0.5979 | 0.5946 | 0.5953 | 0.5952 |
78
+ | 0.0179 | 18.0 | 2574 | 2.9197 | 0.6004 | 0.6032 | 0.6004 | 0.6010 | 0.6009 |
79
+ | 0.0113 | 19.0 | 2717 | 2.9423 | 0.5982 | 0.6003 | 0.5982 | 0.5987 | 0.5986 |
80
+ | 0.0134 | 20.0 | 2860 | 2.9476 | 0.6009 | 0.6028 | 0.6009 | 0.6014 | 0.6012 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.55.0
86
+ - Pytorch 2.7.0+cu126
87
+ - Datasets 4.0.0
88
+ - Tokenizers 0.21.4
classification_report_test.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ precision recall f1-score support
2
+
3
+ entailment 0.61 0.61 0.61 750
4
+ contradiction 0.54 0.57 0.55 737
5
+ neutral 0.64 0.62 0.63 777
6
+
7
+ accuracy 0.60 2264
8
+ macro avg 0.60 0.60 0.60 2264
9
+ weighted avg 0.60 0.60 0.60 2264
10
+
11
+ Confusion matrix:
12
+ [[454 180 116]
13
+ [162 417 158]
14
+ [124 172 481]]
confusion_matrix_test.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,entailment,contradiction,neutral
2
+ entailment,454,180,116
3
+ contradiction,162,417,158
4
+ neutral,124,172,481
model_predict.csv ADDED
The diff for this file is too large to render. See raw diff