--- library_name: transformers license: apache-2.0 base_model: google/electra-base-discriminator tags: - generated_from_trainer metrics: - accuracy model-index: - name: electra-problematic-classifier-np results: [] --- # electra-problematic-classifier-np This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2560 - Accuracy: 0.938 - Auc: 0.977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----:| | 0.6111 | 1.0 | 132 | 0.4996 | 0.924 | 0.968 | | 0.4567 | 2.0 | 264 | 0.3629 | 0.916 | 0.973 | | 0.3502 | 3.0 | 396 | 0.3241 | 0.88 | 0.976 | | 0.2987 | 4.0 | 528 | 0.2722 | 0.92 | 0.977 | | 0.2816 | 5.0 | 660 | 0.2560 | 0.938 | 0.977 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1