File size: 1,075 Bytes
a4a9877 f2cfb49 5aecbb7 3099958 f2cfb49 3099958 f2cfb49 a4a9877 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
tags:
- tabular
- classification
- tabular-classification
- google-ads
widget:
structuredData:
keyword:
- garner
- chevy
- location
class:
- brand
- brand
- geo
datasets:
- adgrowr/autotrain-data-negative-keywords-classifier
co2_eq_emissions:
emissions: 1.2831572182351383
---
# Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 61622134846
- CO2 Emissions (in grams): 1.2832
## Validation Metrics
- Loss: 0.883
- Accuracy: 0.583
- Macro F1: 0.184
- Micro F1: 0.583
- Weighted F1: 0.429
- Macro Precision: 0.146
- Micro Precision: 0.583
- Weighted Precision: 0.340
- Macro Recall: 0.250
- Micro Recall: 0.583
- Weighted Recall: 0.583
## Usage
```python
import json
import joblib
import pandas as pd
model = joblib.load('model.joblib')
config = json.load(open('config.json'))
features = config['features']
# data = pd.read_csv("data.csv")
data = data[features]
data.columns = ["feat_" + str(col) for col in data.columns]
predictions = model.predict(data) # or model.predict_proba(data)
``` |