Xenova HF Staff whitphx HF Staff commited on
Commit
8af5a62
·
verified ·
1 Parent(s): 4a824fc

Add/update the quantized ONNX model files and README.md for Transformers.js v3 (#1)

Browse files

- Add/update the quantized ONNX model files and README.md for Transformers.js v3 (f15f041d0886bcc19b436407962911fb17d42460)


Co-authored-by: Yuichiro Tachibana <whitphx@users.noreply.huggingface.co>

README.md CHANGED
@@ -5,4 +5,21 @@ library_name: transformers.js
5
 
6
  https://huggingface.co/Intel/dpt-hybrid-midas with ONNX weights to be compatible with Transformers.js.
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
 
5
 
6
  https://huggingface.co/Intel/dpt-hybrid-midas with ONNX weights to be compatible with Transformers.js.
7
 
8
+ ## Usage (Transformers.js)
9
+
10
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
11
+ ```bash
12
+ npm i @huggingface/transformers
13
+ ```
14
+
15
+ **Example:** Depth estimation.
16
+
17
+ ```js
18
+ import { pipeline } from '@huggingface/transformers';
19
+
20
+ const depth_estimator = await pipeline('depth-estimation', 'Xenova/dpt-hybrid-midas');
21
+ const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';
22
+ const out = await depth_estimator(url);
23
+ ```
24
+
25
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
onnx/model_bnb4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1dc0bcffe8db7bdce34adadec2517de95bc6b1d3d9087d99c6a94d7838237db8
3
+ size 185136903
onnx/model_q4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d03ce82f2325ebc517d09bc648a2a9d7de7dbe67000b5724b3ecd410ae8818f3
3
+ size 190592231
onnx/model_q4f16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9414439ed59a59778f4abc2aeda9975afa98c48c2224848f82279f9bfcb4fdf7
3
+ size 118219625
onnx/model_uint8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a86cdd00479cae6c30f890c7f68d1f7d54dc56ef52f7432df9e4dbe54c185f25
3
+ size 123702011