Text-to-Video
howe commited on
Commit
57ea4d2
·
verified ·
1 Parent(s): 4f21320

Upload folder using huggingface_hub

Browse files
Files changed (5) hide show
  1. .gitattributes +1 -0
  2. LICENSE +38 -0
  3. README.md +718 -0
  4. assets/logo2.png +0 -0
  5. assets/main_pipeline.jpg +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/main_pipeline.jpg filter=lfs diff=lfs merge=lfs -text
LICENSE CHANGED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - zh
5
+ license: other
6
+ tasks:
7
+ - video-generation
8
+
9
+ ---
10
+
11
+ <!-- markdownlint-disable first-line-h1 -->
12
+ <!-- markdownlint-disable html -->
13
+
14
+ # <span id="Terms">声明与协议/Terms and Conditions</span>
15
+
16
+ ## 声明
17
+
18
+ 我们在此声明,不要利用Skywork模型进行任何危害国家社会安全或违法的活动。另外,我们也要求使用者不要将 Skywork 模型用于未经适当安全审查和备案的互联网服务。我们希望所有的使用者都能遵守这个原则,确保科技的发展能在规范和合法的环境下进行。
19
+
20
+ 我们已经尽我们所能,来确保模型训练过程中使用的数据的合规性。然而,尽管我们已经做出了巨大的努力,但由于模型和数据的复杂性,仍有可能存在一些无法预见的问题。因此,如果由于使用skywork开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。
21
+
22
+ We hereby declare that the Skywork model should not be used for any activities that pose a threat to national or societal security or engage in unlawful actions. Additionally, we request users not to deploy the Skywork model for internet services without appropriate security reviews and records. We hope that all users will adhere to this principle to ensure that technological advancements occur in a regulated and lawful environment.
23
+
24
+ We have done our utmost to ensure the compliance of the data used during the model's training process. However, despite our extensive efforts, due to the complexity of the model and data, there may still be unpredictable risks and issues. Therefore, if any problems arise as a result of using the Skywork open-source model, including but not limited to data security issues, public opinion risks, or any risks and problems arising from the model being misled, abused, disseminated, or improperly utilized, we will not assume any responsibility.
25
+
26
+ ## 协议
27
+
28
+ 社区使用Skywork模型需要遵循[《Skywork 模型社区许可协议》](https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20模型社区许可协议.pdf)。Skywork模型支持商业用途,如果您计划将Skywork模型或其衍生品用于商业目的,无需再次申请, 但请您仔细阅读[《Skywork 模型社区许可协议》](https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20模型社区许可协议.pdf)并严格遵守相关条款。
29
+
30
+
31
+ The community usage of Skywork model requires [Skywork Community License](https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20Community%20License.pdf). The Skywork model supports commercial use. If you plan to use the Skywork model or its derivatives for commercial purposes, you must abide by terms and conditions within [Skywork Community License](https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20Community%20License.pdf).
32
+
33
+
34
+
35
+ [《Skywork 模型社区许可协议》》]:https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20模型社区许可协议.pdf
36
+
37
+
38
+ [skywork-opensource@kunlun-inc.com]: mailto:skywork-opensource@kunlun-inc.com
README.md CHANGED
@@ -2,4 +2,722 @@
2
  license: other
3
  license_name: skywork-license
4
  license_link: LICENSE
 
5
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: other
3
  license_name: skywork-license
4
  license_link: LICENSE
5
+ pipeline_tag: text-to-video
6
  ---
7
+ <p align="center">
8
+ <img src="assets/logo2.png" alt="SkyReels Logo" width="50%">
9
+ </p>
10
+
11
+ <h1 align="center">SkyReels V2: Infinite-Length Film Generative Model</h1>
12
+
13
+ <p align="center">
14
+ 📑 <a href="https://arxiv.org/pdf/2504.13074">Technical Report</a> · 👋 <a href="https://www.skyreels.ai/home?utm_campaign=huggingface_skyreels_v2" target="_blank">Playground</a> · 💬 <a href="https://discord.gg/PwM6NYtccQ" target="_blank">Discord</a> · 🤗 <a href="https://huggingface.co/collections/Skywork/skyreels-v2-6801b1b93df627d441d0d0d9" target="_blank">Hugging Face</a> · 🤖 <a href="https://www.modelscope.cn/collections/SkyReels-V2-f665650130b144" target="_blank">ModelScope</a> · 🌐 <a href="https://github.com/SkyworkAI/SkyReels-V2" target="_blank">GitHub</a>
15
+ </p>
16
+
17
+ ---
18
+ Welcome to the **SkyReels V2** repository! Here, you'll find the model weights for our infinite-length film generative models. To the best of our knowledge, it represents the first open-source video generative model employing **AutoRegressive Diffusion-Forcing architecture** that achieves the **SOTA performance** among publicly available models.
19
+
20
+
21
+ ## 🔥🔥🔥 News!!
22
+ * Apr 24, 2025: 🔥 We release the 720P models, [SkyReels-V2-DF-14B-720P](https://huggingface.co/Skywork/SkyReels-V2-DF-14B-720P) and [SkyReels-V2-I2V-14B-720P](https://huggingface.co/Skywork/SkyReels-V2-I2V-14B-720P). The former facilitates infinite-length autoregressive video generation, and the latter focuses on Image2Video synthesis.
23
+ * Apr 21, 2025: 👋 We release the inference code and model weights of [SkyReels-V2](https://huggingface.co/collections/Skywork/skyreels-v2-6801b1b93df627d441d0d0d9) Series Models and the video captioning model [SkyCaptioner-V1](https://huggingface.co/Skywork/SkyCaptioner-V1) .
24
+ * Apr 3, 2025: 🔥 We also release [SkyReels-A2](https://github.com/SkyworkAI/SkyReels-A2). This is an open-sourced controllable video generation framework capable of assembling arbitrary visual elements.
25
+ * Feb 18, 2025: 🔥 we released [SkyReels-A1](https://github.com/SkyworkAI/SkyReels-A1). This is an open-sourced and effective framework for portrait image animation.
26
+ * Feb 18, 2025: 🔥 We released [SkyReels-V1](https://github.com/SkyworkAI/SkyReels-V1). This is the first and most advanced open-source human-centric video foundation model.
27
+
28
+ ## 🎥 Demos
29
+ <table>
30
+ <tr>
31
+ <td align="center">
32
+ <video src="https://github.com/user-attachments/assets/f6f9f9a7-5d5f-433c-9d73-d8d593b7ad25" width="100%"></video>
33
+ </td>
34
+ <td align="center">
35
+ <video src="https://github.com/user-attachments/assets/0eb13415-f4d9-4aaf-bcd3-3031851109b9" width="100%"></video>
36
+ </td>
37
+ <td align="center">
38
+ <video src="https://github.com/user-attachments/assets/dcd16603-5bf4-4786-8e4d-1ed23889d07a" width="100%"></video>
39
+ </td>
40
+ </tr>
41
+ </table>
42
+ The demos above showcase 30-second videos generated using our SkyReels-V2 Diffusion Forcing model.
43
+
44
+
45
+ ## 📑 TODO List
46
+
47
+ - [x] <a href="https://arxiv.org/pdf/2504.13074">Technical Report</a>
48
+ - [x] Checkpoints of the 14B and 1.3B Models Series
49
+ - [x] Single-GPU & Multi-GPU Inference Code
50
+ - [x] <a href="https://huggingface.co/Skywork/SkyCaptioner-V1">SkyCaptioner-V1</a>: A Video Captioning Model
51
+ - [x] Prompt Enhancer
52
+ - [ ] Diffusers integration
53
+ - [ ] Checkpoints of the 5B Models Series
54
+ - [ ] Checkpoints of the Camera Director Models
55
+ - [ ] Checkpoints of the Step & Guidance Distill Model
56
+
57
+
58
+ ## 🚀 Quickstart
59
+
60
+ #### Installation
61
+ ```shell
62
+ # clone the repository.
63
+ git clone https://github.com/SkyworkAI/SkyReels-V2
64
+ cd SkyReels-V2
65
+ # Install dependencies. Test environment uses Python 3.10.12.
66
+ pip install -r requirements.txt
67
+ ```
68
+
69
+ #### Model Download
70
+ You can download our models from Hugging Face:
71
+ <table>
72
+ <thead>
73
+ <tr>
74
+ <th>Type</th>
75
+ <th>Model Variant</th>
76
+ <th>Recommended Height/Width/Frame</th>
77
+ <th>Link</th>
78
+ </tr>
79
+ </thead>
80
+ <tbody>
81
+ <tr>
82
+ <td rowspan="5">Diffusion Forcing</td>
83
+ <td>1.3B-540P</td>
84
+ <td>544 * 960 * 97f</td>
85
+ <td>🤗 <a href="https://huggingface.co/Skywork/SkyReels-V2-DF-1.3B-540P">Huggingface</a> 🤖 <a href="https://www.modelscope.cn/models/Skywork/SkyReels-V2-DF-1.3B-540P">ModelScope</a></td>
86
+ </tr>
87
+ <tr>
88
+ <td>5B-540P</td>
89
+ <td>544 * 960 * 97f</td>
90
+ <td>Coming Soon</td>
91
+ </tr>
92
+ <tr>
93
+ <td>5B-720P</td>
94
+ <td>720 * 1280 * 121f</td>
95
+ <td>Coming Soon</td>
96
+ </tr>
97
+ <tr>
98
+ <td>14B-540P</td>
99
+ <td>544 * 960 * 97f</td>
100
+ <td>🤗 <a href="https://huggingface.co/Skywork/SkyReels-V2-DF-14B-540P">Huggingface</a> 🤖 <a href="https://www.modelscope.cn/models/Skywork/SkyReels-V2-DF-14B-540P">ModelScope</a></td>
101
+ </tr>
102
+ <tr>
103
+ <td>14B-720P</td>
104
+ <td>720 * 1280 * 121f</td>
105
+ <td>🤗 <a href="https://huggingface.co/Skywork/SkyReels-V2-DF-14B-720P">Huggingface</a> 🤖 <a href="https://www.modelscope.cn/models/Skywork/SkyReels-V2-DF-14B-720P">ModelScope</a></td>
106
+ </tr>
107
+ <tr>
108
+ <td rowspan="5">Text-to-Video</td>
109
+ <td>1.3B-540P</td>
110
+ <td>544 * 960 * 97f</td>
111
+ <td>Coming Soon</td>
112
+ </tr>
113
+ <tr>
114
+ <td>5B-540P</td>
115
+ <td>544 * 960 * 97f</td>
116
+ <td>Coming Soon</td>
117
+ </tr>
118
+ <tr>
119
+ <td>5B-720P</td>
120
+ <td>720 * 1280 * 121f</td>
121
+ <td>Coming Soon</td>
122
+ </tr>
123
+ <tr>
124
+ <td>14B-540P</td>
125
+ <td>544 * 960 * 97f</td>
126
+ <td>🤗 <a href="https://huggingface.co/Skywork/SkyReels-V2-T2V-14B-540P">Huggingface</a> 🤖 <a href="https://www.modelscope.cn/models/Skywork/SkyReels-V2-T2V-14B-540P">ModelScope</a></td>
127
+ </tr>
128
+ <tr>
129
+ <td>14B-720P</td>
130
+ <td>720 * 1280 * 121f</td>
131
+ <td>🤗 <a href="https://huggingface.co/Skywork/SkyReels-V2-T2V-14B-720P">Huggingface</a> 🤖 <a href="https://www.modelscope.cn/models/Skywork/SkyReels-V2-T2V-14B-720P">ModelScope</a></td>
132
+ </tr>
133
+ <tr>
134
+ <td rowspan="5">Image-to-Video</td>
135
+ <td>1.3B-540P</td>
136
+ <td>544 * 960 * 97f</td>
137
+ <td>🤗 <a href="https://huggingface.co/Skywork/SkyReels-V2-I2V-1.3B-540P">Huggingface</a> 🤖 <a href="https://www.modelscope.cn/models/Skywork/SkyReels-V2-I2V-1.3B-540P">ModelScope</a></td>
138
+ </tr>
139
+ <tr>
140
+ <td>5B-540P</td>
141
+ <td>544 * 960 * 97f</td>
142
+ <td>Coming Soon</td>
143
+ </tr>
144
+ <tr>
145
+ <td>5B-720P</td>
146
+ <td>720 * 1280 * 121f</td>
147
+ <td>Coming Soon</td>
148
+ </tr>
149
+ <tr>
150
+ <td>14B-540P</td>
151
+ <td>544 * 960 * 97f</td>
152
+ <td>🤗 <a href="https://huggingface.co/Skywork/SkyReels-V2-I2V-14B-540P">Huggingface</a> 🤖 <a href="https://www.modelscope.cn/models/Skywork/SkyReels-V2-I2V-14B-540P">ModelScope</a></td>
153
+ </tr>
154
+ <tr>
155
+ <td>14B-720P</td>
156
+ <td>720 * 1280 * 121f</td>
157
+ <td>🤗 <a href="https://huggingface.co/Skywork/SkyReels-V2-I2V-14B-720P">Huggingface</a> 🤖 <a href="https://www.modelscope.cn/models/Skywork/SkyReels-V2-I2V-14B-720P">ModelScope</a></td>
158
+ </tr>
159
+ <tr>
160
+ <td rowspan="3">Camera Director</td>
161
+ <td>5B-540P</td>
162
+ <td>544 * 960 * 97f</td>
163
+ <td>Coming Soon</td>
164
+ </tr>
165
+ <tr>
166
+ <td>5B-720P</td>
167
+ <td>720 * 1280 * 121f</td>
168
+ <td>Coming Soon</td>
169
+ </tr>
170
+ <tr>
171
+ <td>14B-720P</td>
172
+ <td>720 * 1280 * 121f</td>
173
+ <td>Coming Soon</td>
174
+ </tr>
175
+ </tbody>
176
+ </table>
177
+
178
+ After downloading, set the model path in your generation commands:
179
+
180
+
181
+ #### Single GPU Inference
182
+
183
+ - **Diffusion Forcing for Long Video Generation**
184
+
185
+ The <a href="https://arxiv.org/abs/2407.01392">**Diffusion Forcing**</a> version model allows us to generate Infinite-Length videos. This model supports both **text-to-video (T2V)** and **image-to-video (I2V)** tasks, and it can perform inference in both synchronous and asynchronous modes. Here we demonstrate 2 running scripts as examples for long video generation. If you want to adjust the inference parameters, e.g., the duration of video, inference mode, read the Note below first.
186
+
187
+ synchronous generation for 10s video
188
+ ```shell
189
+ model_id=Skywork/SkyReels-V2-DF-14B-540P
190
+ # synchronous inference
191
+ python3 generate_video_df.py \
192
+ --model_id ${model_id} \
193
+ --resolution 540P \
194
+ --ar_step 0 \
195
+ --base_num_frames 97 \
196
+ --num_frames 257 \
197
+ --overlap_history 17 \
198
+ --prompt "A graceful white swan with a curved neck and delicate feathers swimming in a serene lake at dawn, its reflection perfectly mirrored in the still water as mist rises from the surface, with the swan occasionally dipping its head into the water to feed." \
199
+ --addnoise_condition 20 \
200
+ --offload \
201
+ --teacache \
202
+ --use_ret_steps \
203
+ --teacache_thresh 0.3
204
+ ```
205
+
206
+ asynchronous generation for 30s video
207
+ ```shell
208
+ model_id=Skywork/SkyReels-V2-DF-14B-540P
209
+ # asynchronous inference
210
+ python3 generate_video_df.py \
211
+ --model_id ${model_id} \
212
+ --resolution 540P \
213
+ --ar_step 5 \
214
+ --causal_block_size 5 \
215
+ --base_num_frames 97 \
216
+ --num_frames 737 \
217
+ --overlap_history 17 \
218
+ --prompt "A graceful white swan with a curved neck and delicate feathers swimming in a serene lake at dawn, its reflection perfectly mirrored in the still water as mist rises from the surface, with the swan occasionally dipping its head into the water to feed." \
219
+ --addnoise_condition 20 \
220
+ --offload
221
+ ```
222
+
223
+ > **Note**:
224
+ > - If you want to run the **image-to-video (I2V)** task, add `--image ${image_path}` to your command and it is also better to use **text-to-video (T2V)**-like prompt which includes some descriptions of the first-frame image.
225
+ > - For long video generation, you can just switch the `--num_frames`, e.g., `--num_frames 257` for 10s video, `--num_frames 377` for 15s video, `--num_frames 737` for 30s video, `--num_frames 1457` for 60s video. The number is not strictly aligned with the logical frame number for specified time duration, but it is aligned with some training parameters, which means it may perform better. When you use asynchronous inference with causal_block_size > 1, the `--num_frames` should be carefully set.
226
+ > - You can use `--ar_step 5` to enable asynchronous inference. When asynchronous inference, `--causal_block_size 5` is recommended while it is not supposed to be set for synchronous generation. REMEMBER that the frame latent number inputted into the model in every iteration, e.g., base frame latent number (e.g., (97-1)//4+1=25 for base_num_frames=97) and (e.g., (237-97-(97-17)x1+17-1)//4+1=20 for base_num_frames=97, num_frames=237, overlap_history=17) for the last iteration, MUST be divided by causal_block_size. If you find it too hard to calculate and set proper values, just use our recommended setting above :). Asynchronous inference will take more steps to diffuse the whole sequence which means it will be SLOWER than synchronous mode. In our experiments, asynchronous inference may improve the instruction following and visual consistent performance.
227
+ > - To reduce peak VRAM, just lower the `--base_num_frames`, e.g., to 77 or 57, while keeping the same generative length `--num_frames` you want to generate. This may slightly reduce video quality, and it should not be set too small.
228
+ > - `--addnoise_condition` is used to help smooth the long video generation by adding some noise to the clean condition. Too large noise can cause the inconsistency as well. 20 is a recommended value, and you may try larger ones, but it is recommended to not exceed 50.
229
+ > - Generating a 540P video using the 1.3B model requires approximately 14.7GB peak VRAM, while the same resolution video using the 14B model demands around 51.2GB peak VRAM.
230
+
231
+ - **Text To Video & Image To Video**
232
+
233
+ ```shell
234
+ # run Text-to-Video Generation
235
+ model_id=Skywork/SkyReels-V2-T2V-14B-540P
236
+ python3 generate_video.py \
237
+ --model_id ${model_id} \
238
+ --resolution 540P \
239
+ --num_frames 97 \
240
+ --guidance_scale 6.0 \
241
+ --shift 8.0 \
242
+ --fps 24 \
243
+ --prompt "A serene lake surrounded by towering mountains, with a few swans gracefully gliding across the water and sunlight dancing on the surface." \
244
+ --offload \
245
+ --teacache \
246
+ --use_ret_steps \
247
+ --teacache_thresh 0.3
248
+ ```
249
+ > **Note**:
250
+ > - When using an **image-to-video (I2V)** model, you must provide an input image using the `--image ${image_path}` parameter. The `--guidance_scale 5.0` and `--shift 3.0` is recommended for I2V model.
251
+ > - Generating a 540P video using the 1.3B model requires approximately 14.7GB peak VRAM, while the same resolution video using the 14B model demands around 43.4GB peak VRAM.
252
+
253
+
254
+ - **Prompt Enhancer**
255
+
256
+ The prompt enhancer is implemented based on <a href="https://huggingface.co/Qwen/Qwen2.5-32B-Instruct">Qwen2.5-32B-Instruct</a> and is utilized via the `--prompt_enhancer` parameter. It works ideally for short prompts, while for long prompts, it might generate an excessively lengthy prompt that could lead to over-saturation in the generative video. Note the peak memory of GPU is 64G+ if you use `--prompt_enhancer`. If you want to obtain the enhanced prompt separately, you can also run the prompt_enhancer script separately for testing. The steps are as follows:
257
+
258
+ ```shell
259
+ cd skyreels_v2_infer/pipelines
260
+ python3 prompt_enhancer.py --prompt "A serene lake surrounded by towering mountains, with a few swans gracefully gliding across the water and sunlight dancing on the surface."
261
+ ```
262
+ > **Note**:
263
+ > - `--prompt_enhancer` is not allowed if using `--use_usp`. We recommend running the skyreels_v2_infer/pipelines/prompt_enhancer.py script first to generate enhanced prompt before enabling the `--use_usp` parameter.
264
+
265
+
266
+ **Advanced Configuration Options**
267
+
268
+ Below are the key parameters you can customize for video generation:
269
+
270
+ | Parameter | Recommended Value | Description |
271
+ |:----------------------:|:---------:|:-----------------------------------------:|
272
+ | --prompt | | Text description for generating your video |
273
+ | --image | | Path to input image for image-to-video generation |
274
+ | --resolution | 540P or 720P | Output video resolution (select based on model type) |
275
+ | --num_frames | 97 or 121 | Total frames to generate (**97 for 540P models**, **121 for 720P models**) |
276
+ | --inference_steps | 50 | Number of denoising steps |
277
+ | --fps | 24 | Frames per second in the output video |
278
+ | --shift | 8.0 or 5.0 | Flow matching scheduler parameter (**8.0 for T2V**, **5.0 for I2V**) |
279
+ | --guidance_scale | 6.0 or 5.0 | Controls text adherence strength (**6.0 for T2V**, **5.0 for I2V**) |
280
+ | --seed | | Fixed seed for reproducible results (omit for random generation) |
281
+ | --offload | True | Offloads model components to CPU to reduce VRAM usage (recommended) |
282
+ | --use_usp | True | Enables multi-GPU acceleration with xDiT USP |
283
+ | --outdir | ./video_out | Directory where generated videos will be saved |
284
+ | --prompt_enhancer | True | Expand the prompt into a more detailed description |
285
+ | --teacache | False | Enables teacache for faster inference |
286
+ | --teacache_thresh | 0.2 | Higher speedup will cause to worse quality |
287
+ | --use_ret_steps | False | Retention Steps for teacache |
288
+
289
+ **Diffusion Forcing Additional Parameters**
290
+ | Parameter | Recommended Value | Description |
291
+ |:----------------------:|:---------:|:-----------------------------------------:|
292
+ | --ar_step | 0 | Controls asynchronous inference (0 for synchronous mode) |
293
+ | --base_num_frames | 97 or 121 | Base frame count (**97 for 540P**, **121 for 720P**) |
294
+ | --overlap_history | 17 | Number of frames to overlap for smooth transitions in long videos |
295
+ | --addnoise_condition | 20 | Improves consistency in long video generation |
296
+ | --causal_block_size | 5 | Recommended when using asynchronous inference (--ar_step > 0) |
297
+
298
+ #### Multi-GPU inference using xDiT USP
299
+
300
+ We use [xDiT](https://github.com/xdit-project/xDiT) USP to accelerate inference. For example, to generate a video with 2 GPUs, you can use the following command:
301
+ - **Diffusion Forcing**
302
+ ```shell
303
+ model_id=Skywork/SkyReels-V2-DF-14B-540P
304
+ # diffusion forcing synchronous inference
305
+ torchrun --nproc_per_node=2 generate_video_df.py \
306
+ --model_id ${model_id} \
307
+ --resolution 540P \
308
+ --ar_step 0 \
309
+ --base_num_frames 97 \
310
+ --num_frames 257 \
311
+ --overlap_history 17 \
312
+ --prompt "A graceful white swan with a curved neck and delicate feathers swimming in a serene lake at dawn, its reflection perfectly mirrored in the still water as mist rises from the surface, with the swan occasionally dipping its head into the water to feed." \
313
+ --addnoise_condition 20 \
314
+ --use_usp \
315
+ --offload \
316
+ --seed 42
317
+ ```
318
+ - **Text To Video & Image To Video**
319
+ ```shell
320
+ # run Text-to-Video Generation
321
+ model_id=Skywork/SkyReels-V2-T2V-14B-540P
322
+ torchrun --nproc_per_node=2 generate_video.py \
323
+ --model_id ${model_id} \
324
+ --resolution 540P \
325
+ --num_frames 97 \
326
+ --guidance_scale 6.0 \
327
+ --shift 8.0 \
328
+ --fps 24 \
329
+ --offload \
330
+ --prompt "A serene lake surrounded by towering mountains, with a few swans gracefully gliding across the water and sunlight dancing on the surface." \
331
+ --use_usp \
332
+ --seed 42
333
+ ```
334
+ > **Note**:
335
+ > - When using an **image-to-video (I2V)** model, you must provide an input image using the `--image ${image_path}` parameter. The `--guidance_scale 5.0` and `--shift 3.0` is recommended for I2V model.
336
+
337
+
338
+ ## Contents
339
+ - [Abstract](#abstract)
340
+ - [Methodology of SkyReels-V2](#methodology-of-skyreels-v2)
341
+ - [Key Contributions of SkyReels-V2](#key-contributions-of-skyreels-v2)
342
+ - [Video Captioner](#video-captioner)
343
+ - [Reinforcement Learning](#reinforcement-learning)
344
+ - [Diffusion Forcing](#diffusion-forcing)
345
+ - [High-Quality Supervised Fine-Tuning(SFT)](#high-quality-supervised-fine-tuning-sft)
346
+ - [Performance](#performance)
347
+ - [Acknowledgements](#acknowledgements)
348
+ - [Citation](#citation)
349
+ ---
350
+
351
+ ## Abstract
352
+ Recent advances in video generation have been driven by diffusion models and autoregressive frameworks, yet critical challenges persist in harmonizing prompt adherence, visual quality, motion dynamics, and duration: compromises in motion dynamics to enhance temporal visual quality, constrained video duration (5-10 seconds) to prioritize resolution, and inadequate shot-aware generation stemming from general-purpose MLLMs' inability to interpret cinematic grammar, such as shot composition, actor expressions, and camera motions. These intertwined limitations hinder realistic long-form synthesis and professional film-style generation.
353
+
354
+ To address these limitations, we introduce SkyReels-V2, the world's first infinite-length film generative model using a Diffusion Forcing framework. Our approach synergizes Multi-modal Large Language Models (MLLM), Multi-stage Pretraining, Reinforcement Learning, and Diffusion Forcing techniques to achieve comprehensive optimization. Beyond its technical innovations, SkyReels-V2 enables multiple practical applications, including Story Generation, Image-to-Video Synthesis, Camera Director functionality, and multi-subject consistent video generation through our <a href="https://github.com/SkyworkAI/SkyReels-A2">Skyreels-A2</a> system.
355
+
356
+ ## Methodology of SkyReels-V2
357
+
358
+ The SkyReels-V2 methodology consists of several interconnected components. It starts with a comprehensive data processing pipeline that prepares various quality training data. At its core is the Video Captioner architecture, which provides detailed annotations for video content. The system employs a multi-task pretraining strategy to build fundamental video generation capabilities. Post-training optimization includes Reinforcement Learning to enhance motion quality, Diffusion Forcing Training for generating extended videos, and High-quality Supervised Fine-Tuning (SFT) stages for visual refinement. The model runs on optimized computational infrastructure for efficient training and inference. SkyReels-V2 supports multiple applications, including Story Generation, Image-to-Video Synthesis, Camera Director functionality, and Elements-to-Video Generation.
359
+
360
+ <p align="center">
361
+ <img src="assets/main_pipeline.jpg" alt="mainpipeline" width="100%">
362
+ </p>
363
+
364
+ ## Key Contributions of SkyReels-V2
365
+
366
+ #### Video Captioner
367
+
368
+ <a href="https://huggingface.co/Skywork/SkyCaptioner-V1">SkyCaptioner-V1</a> serves as our video captioning model for data annotation. This model is trained on the captioning result from the base model <a href="https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct">Qwen2.5-VL-72B-Instruct</a> and the sub-expert captioners on a balanced video data. The balanced video data is a carefully curated dataset of approximately 2 million videos to ensure conceptual balance and annotation quality. Built upon the <a href="https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct">Qwen2.5-VL-7B-Instruct</a> foundation model, <a href="https://huggingface.co/Skywork/SkyCaptioner-V1">SkyCaptioner-V1</a> is fine-tuned to enhance performance in domain-specific video captioning tasks. To compare the performance with the SOTA models, we conducted a manual assessment of accuracy across different captioning fields using a test set of 1,000 samples. The proposed <a href="https://huggingface.co/Skywork/SkyCaptioner-V1">SkyCaptioner-V1</a> achieves the highest average accuracy among the baseline models, and show a dramatic result in the shot related fields
369
+
370
+ <p align="center">
371
+ <table align="center">
372
+ <thead>
373
+ <tr>
374
+ <th>model</th>
375
+ <th><a href="https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct">Qwen2.5-VL-7B-Ins.</a></th>
376
+ <th><a href="https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct">Qwen2.5-VL-72B-Ins.</a></th>
377
+ <th><a href="https://huggingface.co/omni-research/Tarsier2-Recap-7b">Tarsier2-Recap-7b</a></th>
378
+ <th><a href="https://huggingface.co/Skywork/SkyCaptioner-V1">SkyCaptioner-V1</th>
379
+ </tr>
380
+ </thead>
381
+ <tbody>
382
+ <tr>
383
+ <td>Avg accuracy</td>
384
+ <td>51.4%</td>
385
+ <td>58.7%</td>
386
+ <td>49.4%</td>
387
+ <td><strong>76.3%</strong></td>
388
+ </tr>
389
+ <tr>
390
+ <td>shot type</td>
391
+ <td>76.8%</td>
392
+ <td>82.5%</td>
393
+ <td>60.2%</td>
394
+ <td><strong>93.7%</strong></td>
395
+ </tr>
396
+ <tr>
397
+ <td>shot angle</td>
398
+ <td>60.0%</td>
399
+ <td>73.7%</td>
400
+ <td>52.4%</td>
401
+ <td><strong>89.8%</strong></td>
402
+ </tr>
403
+ <tr>
404
+ <td>shot position</td>
405
+ <td>28.4%</td>
406
+ <td>32.7%</td>
407
+ <td>23.6%</td>
408
+ <td><strong>83.1%</strong></td>
409
+ </tr>
410
+ <tr>
411
+ <td>camera motion</td>
412
+ <td>62.0%</td>
413
+ <td>61.2%</td>
414
+ <td>45.3%</td>
415
+ <td><strong>85.3%</strong></td>
416
+ </tr>
417
+ <tr>
418
+ <td>expression</td>
419
+ <td>43.6%</td>
420
+ <td>51.5%</td>
421
+ <td>54.3%</td>
422
+ <td><strong>68.8%</strong></td>
423
+ </tr>
424
+ <tr>
425
+ <td colspan="5" style="text-align: center; border-bottom: 1px solid #ddd; padding: 8px;"></td>
426
+ </tr>
427
+ <tr>
428
+ <td>TYPES_type</td>
429
+ <td>43.5%</td>
430
+ <td>49.7%</td>
431
+ <td>47.6%</td>
432
+ <td><strong>82.5%</strong></td>
433
+ </tr>
434
+ <tr>
435
+ <td>TYPES_sub_type</td>
436
+ <td>38.9%</td>
437
+ <td>44.9%</td>
438
+ <td>45.9%</td>
439
+ <td><strong>75.4%</strong></td>
440
+ </tr>
441
+ <tr>
442
+ <td>appearance</td>
443
+ <td>40.9%</td>
444
+ <td>52.0%</td>
445
+ <td>45.6%</td>
446
+ <td><strong>59.3%</strong></td>
447
+ </tr>
448
+ <tr>
449
+ <td>action</td>
450
+ <td>32.4%</td>
451
+ <td>52.0%</td>
452
+ <td><strong>69.8%</strong></td>
453
+ <td>68.8%</td>
454
+ </tr>
455
+ <tr>
456
+ <td>position</td>
457
+ <td>35.4%</td>
458
+ <td>48.6%</td>
459
+ <td>45.5%</td>
460
+ <td><strong>57.5%</strong></td>
461
+ </tr>
462
+ <tr>
463
+ <td>is_main_subject</td>
464
+ <td>58.5%</td>
465
+ <td>68.7%</td>
466
+ <td>69.7%</td>
467
+ <td><strong>80.9%</strong></td>
468
+ </tr>
469
+ <tr>
470
+ <td>environment</td>
471
+ <td>70.4%</td>
472
+ <td><strong>72.7%</strong></td>
473
+ <td>61.4%</td>
474
+ <td>70.5%</td>
475
+ </tr>
476
+ <tr>
477
+ <td>lighting</td>
478
+ <td>77.1%</td>
479
+ <td><strong>80.0%</strong></td>
480
+ <td>21.2%</td>
481
+ <td>76.5%</td>
482
+ </tr>
483
+ </tbody>
484
+ </table>
485
+ </p>
486
+
487
+ #### Reinforcement Learning
488
+ Inspired by the previous success in LLM, we propose to enhance the performance of the generative model by Reinforcement Learning. Specifically, we focus on the motion quality because we find that the main drawback of our generative model is:
489
+
490
+ - the generative model does not handle well with large, deformable motions.
491
+ - the generated videos may violate the physical law.
492
+
493
+ To avoid the degradation in other metrics, such as text alignment and video quality, we ensure the preference data pairs have comparable text alignment and video quality, while only the motion quality varies. This requirement poses greater challenges in obtaining preference annotations due to the inherently higher costs of human annotation. To address this challenge, we propose a semi-automatic pipeline that strategically combines automatically generated motion pairs and human annotation results. This hybrid approach not only enhances the data scale but also improves alignment with human preferences through curated quality control. Leveraging this enhanced dataset, we first train a specialized reward model to capture the generic motion quality differences between paired samples. This learned reward function subsequently guides the sample selection process for Direct Preference Optimization (DPO), enhancing the motion quality of the generative model.
494
+
495
+ #### Diffusion Forcing
496
+
497
+ We introduce the Diffusion Forcing Transformer to unlock our model’s ability to generate long videos. Diffusion Forcing is a training and sampling strategy where each token is assigned an independent noise level. This allows tokens to be denoised according to arbitrary, per-token schedules. Conceptually, this approach functions as a form of partial masking: a token with zero noise is fully unmasked, while complete noise fully masks it. Diffusion Forcing trains the model to "unmask" any combination of variably noised tokens, using the cleaner tokens as conditional information to guide the recovery of noisy ones. Building on this, our Diffusion Forcing Transformer can extend video generation indefinitely based on the last frames of the previous segment. Note that the synchronous full sequence diffusion is a special case of Diffusion Forcing, where all tokens share the same noise level. This relationship allows us to fine-tune the Diffusion Forcing Transformer from a full-sequence diffusion model.
498
+
499
+ #### High-Quality Supervised Fine-Tuning (SFT)
500
+
501
+ We implement two sequential high-quality supervised fine-tuning (SFT) stages at 540p and 720p resolutions respectively, with the initial SFT phase conducted immediately after pretraining but prior to reinforcement learning (RL) stage.This first-stage SFT serves as a conceptual equilibrium trainer, building upon the foundation model’s pretraining outcomes that utilized only fps24 video data, while strategically removing FPS embedding components to streamline thearchitecture. Trained with the high-quality concept-balanced samples, this phase establishes optimized initialization parameters for subsequent training processes. Following this, we execute a secondary high-resolution SFT at 720p after completing the diffusion forcing stage, incorporating identical loss formulations and the higher-quality concept-balanced datasets by the manually filter. This final refinement phase focuses on resolution increase such that the overall video quality will be further enhanced.
502
+
503
+ ## Performance
504
+
505
+ To comprehensively evaluate our proposed method, we construct the SkyReels-Bench for human assessment and leveraged the open-source <a href="https://github.com/Vchitect/VBench">V-Bench</a> for automated evaluation. This allows us to compare our model with the state-of-the-art (SOTA) baselines, including both open-source and proprietary models.
506
+
507
+ #### Human Evaluation
508
+
509
+ For human evaluation, we design SkyReels-Bench with 1,020 text prompts, systematically assessing three dimensions: Instruction Adherence, Motion Quality, Consistency and Visual Quality. This benchmark is designed to evaluate both text-to-video (T2V) and image-to-video (I2V) generation models, providing comprehensive assessment across different generation paradigms. To ensure fairness, all models were evaluated under default settings with consistent resolutions, and no post-generation filtering was applied.
510
+
511
+ - Text To Video Models
512
+
513
+ <p align="center">
514
+ <table align="center">
515
+ <thead>
516
+ <tr>
517
+ <th>Model Name</th>
518
+ <th>Average</th>
519
+ <th>Instruction Adherence</th>
520
+ <th>Consistency</th>
521
+ <th>Visual Quality</th>
522
+ <th>Motion Quality</th>
523
+ </tr>
524
+ </thead>
525
+ <tbody>
526
+ <tr>
527
+ <td><a href="https://runwayml.com/research/introducing-gen-3-alpha">Runway-Gen3 Alpha</a></td>
528
+ <td>2.53</td>
529
+ <td>2.19</td>
530
+ <td>2.57</td>
531
+ <td>3.23</td>
532
+ <td>2.11</td>
533
+ </tr>
534
+ <tr>
535
+ <td><a href="https://github.com/Tencent/HunyuanVideo">HunyuanVideo-13B</a></td>
536
+ <td>2.82</td>
537
+ <td>2.64</td>
538
+ <td>2.81</td>
539
+ <td>3.20</td>
540
+ <td>2.61</td>
541
+ </tr>
542
+ <tr>
543
+ <td><a href="https://klingai.com">Kling-1.6 STD Mode</a></td>
544
+ <td>2.99</td>
545
+ <td>2.77</td>
546
+ <td>3.05</td>
547
+ <td>3.39</td>
548
+ <td><strong>2.76</strong></td>
549
+ </tr>
550
+ <tr>
551
+ <td><a href="https://hailuoai.video">Hailuo-01</a></td>
552
+ <td>3.0</td>
553
+ <td>2.8</td>
554
+ <td>3.08</td>
555
+ <td>3.29</td>
556
+ <td>2.74</td>
557
+ </tr>
558
+ <tr>
559
+ <td><a href="https://github.com/Wan-Video/Wan2.1">Wan2.1-14B</a></td>
560
+ <td>3.12</td>
561
+ <td>2.91</td>
562
+ <td>3.31</td>
563
+ <td><strong>3.54</strong></td>
564
+ <td>2.71</td>
565
+ </tr>
566
+ <tr>
567
+ <td>SkyReels-V2</td>
568
+ <td><strong>3.14</strong></td>
569
+ <td><strong>3.15</strong></td>
570
+ <td><strong>3.35</strong></td>
571
+ <td>3.34</td>
572
+ <td>2.74</td>
573
+ </tr>
574
+ </tbody>
575
+ </table>
576
+ </p>
577
+
578
+ The evaluation demonstrates that our model achieves significant advancements in **instruction adherence (3.15)** compared to baseline methods, while maintaining competitive performance in **motion quality (2.74)** without sacrificing the **consistency (3.35)**.
579
+
580
+ - Image To Video Models
581
+
582
+ <p align="center">
583
+ <table align="center">
584
+ <thead>
585
+ <tr>
586
+ <th>Model</th>
587
+ <th>Average</th>
588
+ <th>Instruction Adherence</th>
589
+ <th>Consistency</th>
590
+ <th>Visual Quality</th>
591
+ <th>Motion Quality</th>
592
+ </tr>
593
+ </thead>
594
+ <tbody>
595
+ <tr>
596
+ <td><a href="https://github.com/Tencent/HunyuanVideo">HunyuanVideo-13B</a></td>
597
+ <td>2.84</td>
598
+ <td>2.97</td>
599
+ <td>2.95</td>
600
+ <td>2.87</td>
601
+ <td>2.56</td>
602
+ </tr>
603
+ <tr>
604
+ <td><a href="https://github.com/Wan-Video/Wan2.1">Wan2.1-14B</a></td>
605
+ <td>2.85</td>
606
+ <td>3.10</td>
607
+ <td>2.81</td>
608
+ <td>3.00</td>
609
+ <td>2.48</td>
610
+ </tr>
611
+ <tr>
612
+ <td><a href="https://hailuoai.video">Hailuo-01</a></td>
613
+ <td>3.05</td>
614
+ <td>3.31</td>
615
+ <td>2.58</td>
616
+ <td>3.55</td>
617
+ <td>2.74</td>
618
+ </tr>
619
+ <tr>
620
+ <td><a href="https://klingai.com">Kling-1.6 Pro Mode</a></td>
621
+ <td>3.4</td>
622
+ <td>3.56</td>
623
+ <td>3.03</td>
624
+ <td>3.58</td>
625
+ <td>3.41</td>
626
+ </tr>
627
+ <tr>
628
+ <td><a href="https://runwayml.com/research/introducing-runway-gen-4">Runway-Gen4</a></td>
629
+ <td>3.39</td>
630
+ <td>3.75</td>
631
+ <td>3.2</td>
632
+ <td>3.4</td>
633
+ <td>3.37</td>
634
+ </tr>
635
+ <tr>
636
+ <td>SkyReels-V2-DF</td>
637
+ <td>3.24</td>
638
+ <td>3.64</td>
639
+ <td>3.21</td>
640
+ <td>3.18</td>
641
+ <td>2.93</td>
642
+ </tr>
643
+ <tr>
644
+ <td>SkyReels-V2-I2V</td>
645
+ <td>3.29</td>
646
+ <td>3.42</td>
647
+ <td>3.18</td>
648
+ <td>3.56</td>
649
+ <td>3.01</td>
650
+ </tr>
651
+ </tbody>
652
+ </table>
653
+ </p>
654
+
655
+ Our results demonstrate that both **SkyReels-V2-I2V (3.29)** and **SkyReels-V2-DF (3.24)** achieve state-of-the-art performance among open-source models, significantly outperforming HunyuanVideo-13B (2.84) and Wan2.1-14B (2.85) across all quality dimensions. With an average score of 3.29, SkyReels-V2-I2V demonstrates comparable performance to proprietary models Kling-1.6 (3.4) and Runway-Gen4 (3.39).
656
+
657
+
658
+ #### VBench
659
+ To objectively compare SkyReels-V2 Model against other leading open-source Text-To-Video models, we conduct comprehensive evaluations using the public benchmark <a href="https://github.com/Vchitect/VBench">V-Bench</a>. Our evaluation specifically leverages the benchmark’s longer version prompt. For fair comparison with baseline models, we strictly follow their recommended setting for inference.
660
+
661
+ <p align="center">
662
+ <table align="center">
663
+ <thead>
664
+ <tr>
665
+ <th>Model</th>
666
+ <th>Total Score</th>
667
+ <th>Quality Score</th>
668
+ <th>Semantic Score</th>
669
+ </tr>
670
+ </thead>
671
+ <tbody>
672
+ <tr>
673
+ <td><a href="https://github.com/hpcaitech/Open-Sora">OpenSora 2.0</a></td>
674
+ <td>81.5 %</td>
675
+ <td>82.1 %</td>
676
+ <td>78.2 %</td>
677
+ </tr>
678
+ <tr>
679
+ <td><a href="https://github.com/THUDM/CogVideo">CogVideoX1.5-5B</a></td>
680
+ <td>80.3 %</td>
681
+ <td>80.9 %</td>
682
+ <td>77.9 %</td>
683
+ </tr>
684
+ <tr>
685
+ <td><a href="https://github.com/Tencent/HunyuanVideo">HunyuanVideo-13B</a></td>
686
+ <td>82.7 %</td>
687
+ <td>84.4 %</td>
688
+ <td>76.2 %</td>
689
+ </tr>
690
+ <tr>
691
+ <td><a href="https://github.com/Wan-Video/Wan2.1">Wan2.1-14B</a></td>
692
+ <td>83.7 %</td>
693
+ <td>84.2 %</td>
694
+ <td><strong>81.4 %</strong></td>
695
+ </tr>
696
+ <tr>
697
+ <td>SkyReels-V2</td>
698
+ <td><strong>83.9 %</strong></td>
699
+ <td><strong>84.7 %</strong></td>
700
+ <td>80.8 %</td>
701
+ </tr>
702
+ </tbody>
703
+ </table>
704
+ </p>
705
+
706
+ The VBench results demonstrate that SkyReels-V2 outperforms all compared models including HunyuanVideo-13B and Wan2.1-14B, With the highest **total score (83.9%)** and **quality score (84.7%)**. In this evaluation, the semantic score is slightly lower than Wan2.1-14B, while we outperform Wan2.1-14B in human evaluations, with the primary gap attributed to V-Bench’s insufficient evaluation of shot-scenario semantic adherence.
707
+
708
+ ## Acknowledgements
709
+ We would like to thank the contributors of <a href="https://github.com/Wan-Video/Wan2.1">Wan 2.1</a>, <a href="https://github.com/xdit-project/xDiT">XDit</a> and <a href="https://qwenlm.github.io/blog/qwen2.5/">Qwen 2.5</a> repositories, for their open research and contributions.
710
+
711
+ ## Citation
712
+
713
+ ```bibtex
714
+ @misc{chen2025skyreelsv2infinitelengthfilmgenerative,
715
+ title={SkyReels-V2: Infinite-length Film Generative Model},
716
+ author={Guibin Chen and Dixuan Lin and Jiangping Yang and Chunze Lin and Junchen Zhu and Mingyuan Fan and Hao Zhang and Sheng Chen and Zheng Chen and Chengcheng Ma and Weiming Xiong and Wei Wang and Nuo Pang and Kang Kang and Zhiheng Xu and Yuzhe Jin and Yupeng Liang and Yubing Song and Peng Zhao and Boyuan Xu and Di Qiu and Debang Li and Zhengcong Fei and Yang Li and Yahui Zhou},
717
+ year={2025},
718
+ eprint={2504.13074},
719
+ archivePrefix={arXiv},
720
+ primaryClass={cs.CV},
721
+ url={https://arxiv.org/abs/2504.13074},
722
+ }
723
+ ```
assets/logo2.png ADDED
assets/main_pipeline.jpg ADDED

Git LFS Details

  • SHA256: e8fd982dd51a3edd0a1ce451b391526c1a51ea94ae68f5ed79380173dbcce7fb
  • Pointer size: 131 Bytes
  • Size of remote file: 183 kB