--- tags: - vllm - vision - audio - int4 license: mit base_model: google/gemma-3n-E4B-it library_name: transformers --- # RedHatAI/gemma-3n-E4B-it-quantized.w4a16 ## Model Overview - **Model Architecture:** gemma-3n-E4B-it - **Input:** Audio-Vision-Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT4 - **Activation quantization:** INT16 - **Release Date:** 08/01/2025 - **Version:** 1.0 - **Model Developers:** RedHatAI Quantized version of [google/gemma-3n-E4B-it](https://huggingface.co/google/gemma-3n-E4B-it). ### Model Optimizations This model was obtained by quantizing the weights of [google/gemma-3n-E4B-it](https://huggingface.co/google/gemma-3n-E4B-it) to INT4 data type, ready for inference with vLLM >= 0.10.0 ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm.assets.image import ImageAsset from vllm import LLM, SamplingParams # prepare model llm = LLM( model="RedHatAI/gemma-3n-E4B-it-quantized.w4a16", trust_remote_code=True, max_model_len=4096, max_num_seqs=2, ) # prepare inputs question = "What is the content of this image?" inputs = { "prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n", "multi_modal_data": { "image": ImageAsset("cherry_blossom").pil_image.convert("RGB") }, } # generate response print("========== SAMPLE GENERATION ==============") outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64)) print(f"PROMPT : {outputs[0].prompt}") print(f"RESPONSE: {outputs[0].outputs[0].text}") print("==========================================") ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
Model Creation Code ```python import requests import torch from PIL import Image from transformers import AutoProcessor, Gemma3nForConditionalGeneration from llmcompressor import oneshot from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.utils import dispatch_for_generation # Load model. model_id = "google/gemma-3n-E4B-it" model = Gemma3nForConditionalGeneration.from_pretrained(model_id, torch_dtype="auto", device_map="auto") processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) # Oneshot arguments DATASET_ID = "flickr30k" DATASET_SPLIT = {"calibration": "test[:512]"} NUM_CALIBRATION_SAMPLES = 512 MAX_SEQUENCE_LENGTH = 2048 # Define a oneshot data collator for multimodal inputs. def data_collator(batch): assert len(batch) == 1 return {key: torch.tensor(value) for key, value in batch[0].items()} dampening_frac=0.01 # Recipe recipe = [ GPTQModifier( targets="Linear", scheme="W4A16", ignore=[ "re:.*embed_audio.*", "re:.*embed_vision.*", "re:.*audio_tower.*", "re:.*vision_tower.*", "re:.*altup.*", "re:.*lm_head.*", "re:.*laurel.*", "re:model\.language_model\.layers\.\d+\.per_layer_input_gate", "re:model\.language_model\.layers\.\d+\.per_layer_projection", "model.language_model.per_layer_model_projection", ], dampening_frac=dampening_frac ), ] SAVE_DIR = f"{model_id.split('/')[1]}-quantized.{recipe[0].scheme}" # Perform oneshot oneshot( model=model, tokenizer=model_id, dataset=DATASET_ID, splits=DATASET_SPLIT, recipe=recipe, max_seq_length=MAX_SEQUENCE_LENGTH, num_calibration_samples=NUM_CALIBRATION_SAMPLES, trust_remote_code_model=True, data_collator=data_collator, # gemma3n has broken weight offloading which is required by the sequential pipeline pipeline="basic", # gemma3n does not support untying word embeddings tie_word_embeddings=True, output_dir=SAVE_DIR, ) # Save to disk compressed. model.save_pretrained(SAVE_DIR, save_compressed=True) processor.save_pretrained(SAVE_DIR) ```
## Evaluation The model was evaluated using [lm_evaluation_harness](https://github.com/EleutherAI/lm-evaluation-harness) for OpenLLM V1 and V2 text-based benchmarks. The evaluations were conducted using the following commands:
Evaluation Commands ### OpenLLM V1 ``` lm_eval \ --model vllm \ --model_args pretrained="",dtype=auto,add_bos_token=false,max_model_len=4096,gpu_memory_utilization=0.8,enable_chunked_prefill=True,enforce_eager=True,trust_remote_code=True \ --tasks openllm \ --batch_size auto \ --apply_chat_template \ --fewshot_as_multiturn ``` ### Leaderboard V2 ``` lm_eval \ --model vllm \ --model_args pretrained="",dtype=auto,add_bos_token=false,max_model_len=15000,gpu_memory_utilization=0.5,enable_chunked_prefill=True,enforce_eager=True,trust_remote_code=True \ --tasks leaderboard \ --batch_size auto \ --apply_chat_template \ --fewshot_as_multiturn ```
### Accuracy
Category Metric google/gemma-3n-E4B-it RedHatAI/gemma-3n-E4B-it-quantized.w4a16 Recovery (%)
OpenLLM V1 arc_challenge 60.24 59.30 98.44%
gsm8k 60.12 65.13 108.34%
hellaswag 74.94 73.31 97.82%
mmlu 64.14 63.08 98.35%
truthfulqa_mc2 54.87 54.31 99.00%
winogrande 68.35 66.77 97.68%
Average 63.78 63.65 99.80%
Leaderboard bbh 55.46 54.89 98.97%
mmlu_pro 34.38 32.05 93.23%
musr 33.20 34.66 104.40%
ifeval 84.41 81.65 96.73%
gpqa 30.87 28.69 92.95%
math_hard 45.54 39.95 87.72%
Average 47.31 45.32 95.78%