File size: 7,092 Bytes
772cc43
 
 
 
 
0190500
772cc43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
---
tags:
- vllm
- vision
- audio
- int4
license: mit
base_model: google/gemma-3n-E4B-it
library_name: transformers
---

# RedHatAI/gemma-3n-E4B-it-quantized.w4a16

## Model Overview
- **Model Architecture:** gemma-3n-E4B-it
  - **Input:** Audio-Vision-Text
  - **Output:** Text
- **Model Optimizations:**
  - **Weight quantization:** INT4
  - **Activation quantization:** INT16
- **Release Date:** 08/01/2025
- **Version:** 1.0
- **Model Developers:** RedHatAI

Quantized version of [google/gemma-3n-E4B-it](https://huggingface.co/google/gemma-3n-E4B-it).

### Model Optimizations

This model was obtained by quantizing the weights of [google/gemma-3n-E4B-it](https://huggingface.co/google/gemma-3n-E4B-it) to INT4 data type, ready for inference with vLLM >= 0.10.0

## Deployment

### Use with vLLM

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.

```python
from vllm.assets.image import ImageAsset
from vllm import LLM, SamplingParams

# prepare model
llm = LLM(
    model="RedHatAI/gemma-3n-E4B-it-quantized.w4a16",
    trust_remote_code=True,
    max_model_len=4096,
    max_num_seqs=2,
)

# prepare inputs
question = "What is the content of this image?"
inputs = {
    "prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n",
    "multi_modal_data": {
        "image": ImageAsset("cherry_blossom").pil_image.convert("RGB")
    },
}

# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
print(f"PROMPT  : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")
```

vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.

## Creation

This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.

<details>
  <summary>Model Creation Code</summary>
  
```python
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, Gemma3nForConditionalGeneration

from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.utils import dispatch_for_generation

# Load model.
model_id = "google/gemma-3n-E4B-it"
model = Gemma3nForConditionalGeneration.from_pretrained(model_id, torch_dtype="auto", device_map="auto")
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)

# Oneshot arguments
DATASET_ID = "flickr30k"
DATASET_SPLIT = {"calibration": "test[:512]"}
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048


# Define a oneshot data collator for multimodal inputs.
def data_collator(batch):
    assert len(batch) == 1
    return {key: torch.tensor(value) for key, value in batch[0].items()}

dampening_frac=0.01

# Recipe
recipe = [
    GPTQModifier(
        targets="Linear",
        scheme="W4A16",
        ignore=[
            "re:.*embed_audio.*",
            "re:.*embed_vision.*",
            "re:.*audio_tower.*",
            "re:.*vision_tower.*",
            "re:.*altup.*",
            "re:.*lm_head.*",
            "re:.*laurel.*",
            "re:model\.language_model\.layers\.\d+\.per_layer_input_gate",
            "re:model\.language_model\.layers\.\d+\.per_layer_projection",
            "model.language_model.per_layer_model_projection",
        ],
        dampening_frac=dampening_frac
    ),
]

SAVE_DIR = f"{model_id.split('/')[1]}-quantized.{recipe[0].scheme}"

# Perform oneshot
oneshot(
    model=model,
    tokenizer=model_id,
    dataset=DATASET_ID,
    splits=DATASET_SPLIT,
    recipe=recipe,
    max_seq_length=MAX_SEQUENCE_LENGTH,
    num_calibration_samples=NUM_CALIBRATION_SAMPLES,
    trust_remote_code_model=True,
    data_collator=data_collator,
    # gemma3n has broken weight offloading which is required by the sequential pipeline
    pipeline="basic",
    # gemma3n does not support untying word embeddings
    tie_word_embeddings=True,
    output_dir=SAVE_DIR,
)

# Save to disk compressed.
model.save_pretrained(SAVE_DIR, save_compressed=True)
processor.save_pretrained(SAVE_DIR)
```
</details>

## Evaluation

The model was evaluated using [lm_evaluation_harness](https://github.com/EleutherAI/lm-evaluation-harness) for OpenLLM V1 and V2 text-based benchmarks. The evaluations were conducted using the following commands:

<details>
<summary>Evaluation Commands</summary>

### OpenLLM V1
  
```
lm_eval \
  --model vllm \
  --model_args pretrained="<model_name>",dtype=auto,add_bos_token=false,max_model_len=4096,gpu_memory_utilization=0.8,enable_chunked_prefill=True,enforce_eager=True,trust_remote_code=True \
  --tasks openllm \
  --batch_size auto \
  --apply_chat_template \
  --fewshot_as_multiturn

```

### Leaderboard V2

```
lm_eval \
  --model vllm \
  --model_args pretrained="<model_name>",dtype=auto,add_bos_token=false,max_model_len=15000,gpu_memory_utilization=0.5,enable_chunked_prefill=True,enforce_eager=True,trust_remote_code=True \
  --tasks leaderboard \
  --batch_size auto \
  --apply_chat_template \
  --fewshot_as_multiturn

```
</details>

### Accuracy

<table>
  <thead>
    <tr>
      <th>Category</th>
      <th>Metric</th>
      <th>google/gemma-3n-E4B-it</th>
      <th>RedHatAI/gemma-3n-E4B-it-quantized.w4a16</th>
      <th>Recovery (%)</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td rowspan="7"><b>OpenLLM V1</b></td>
      <td>arc_challenge</td>
      <td>60.24</td>
      <td>59.30</td>
      <td>98.44%</td>
    </tr>
    <tr>
      <td>gsm8k</td>
      <td>60.12</td>
      <td>65.13</td>
      <td>108.34%</td>
    </tr>
    <tr>
      <td>hellaswag</td>
      <td>74.94</td>
      <td>73.31</td>
      <td>97.82%</td>
    </tr>
    <tr>
      <td>mmlu</td>
      <td>64.14</td>
      <td>63.08</td>
      <td>98.35%</td>
    </tr>
    <tr>
      <td>truthfulqa_mc2</td>
      <td>54.87</td>
      <td>54.31</td>
      <td>99.00%</td>
    </tr>
    <tr>
      <td>winogrande</td>
      <td>68.35</td>
      <td>66.77</td>
      <td>97.68%</td>
    </tr>
    <tr>
      <td><b>Average</b></td>
      <td>63.78</td>
      <td>63.65</td>
      <td><b>99.80%</b></td>
    </tr>
    <tr>
      <td rowspan="7"><b>Leaderboard</b></td>
      <td>bbh</td>
      <td>55.46</td>
      <td>54.89</td>
      <td>98.97%</td>
    </tr>
    <tr>
      <td>mmlu_pro</td>
      <td>34.38</td>
      <td>32.05</td>
      <td>93.23%</td>
    </tr>
    <tr>
      <td>musr</td>
      <td>33.20</td>
      <td>34.66</td>
      <td>104.40%</td>
    </tr>
    <tr>
      <td>ifeval</td>
      <td>84.41</td>
      <td>81.65</td>
      <td>96.73%</td>
    </tr>
    <tr>
      <td>gpqa</td>
      <td>30.87</td>
      <td>28.69</td>
      <td>92.95%</td>
    </tr>
    <tr>
      <td>math_hard</td>
      <td>45.54</td>
      <td>39.95</td>
      <td>87.72%</td>
    </tr>
    <tr>
      <td><b>Average</b></td>
      <td>47.31</td>
      <td>45.32</td>
      <td><b>95.78%</b></td>
    </tr>
  </tbody>
</table>