File size: 2,836 Bytes
8b83c06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
model-index:
- name: N_roberta_imdb_padding70model
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: imdb
      type: imdb
      config: plain_text
      split: test
      args: plain_text
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.95056
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# N_roberta_imdb_padding70model

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4584
- Accuracy: 0.9506

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2111        | 1.0   | 1563  | 0.1864          | 0.9412   |
| 0.1628        | 2.0   | 3126  | 0.1973          | 0.9474   |
| 0.1178        | 3.0   | 4689  | 0.3140          | 0.9406   |
| 0.0745        | 4.0   | 6252  | 0.2698          | 0.9469   |
| 0.057         | 5.0   | 7815  | 0.3568          | 0.9424   |
| 0.0478        | 6.0   | 9378  | 0.3114          | 0.9477   |
| 0.0281        | 7.0   | 10941 | 0.3123          | 0.9491   |
| 0.0269        | 8.0   | 12504 | 0.3732          | 0.9464   |
| 0.0169        | 9.0   | 14067 | 0.4043          | 0.9466   |
| 0.0156        | 10.0  | 15630 | 0.3296          | 0.9480   |
| 0.0186        | 11.0  | 17193 | 0.4413          | 0.9466   |
| 0.015         | 12.0  | 18756 | 0.3944          | 0.9488   |
| 0.0091        | 13.0  | 20319 | 0.4310          | 0.9481   |
| 0.0061        | 14.0  | 21882 | 0.4363          | 0.9506   |
| 0.0073        | 15.0  | 23445 | 0.4315          | 0.9496   |
| 0.003         | 16.0  | 25008 | 0.4623          | 0.9499   |
| 0.0048        | 17.0  | 26571 | 0.4589          | 0.9494   |
| 0.0           | 18.0  | 28134 | 0.4556          | 0.9504   |
| 0.0028        | 19.0  | 29697 | 0.4608          | 0.9509   |
| 0.0013        | 20.0  | 31260 | 0.4584          | 0.9506   |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3